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Abstract— Douglas-Rachford splitting and the alternating
direction method of multipliers (ADMM) can be used to solve
convex optimization problems that consist of a sum of two
functions. Convergence rate estimates for these algorithms have
received much attention lately. In particular, linear convergence
rates have been shown by several authors under various
assumptions. One such set of assumptions is strong convexity
and smoothness of one of the functions in the minimization
problem. The authors recently provided a linear convergence
rate bound for such problems. In this paper, we show that this
rate bound is tight for many algorithm parameter choices.

I. INTRODUCTION

Douglas-Rachford splitting is an optimization algorithm

that can solve general convex composite optimization prob-

lems. The algorithm has its roots in the 1950’s [5], [17]. In

the late 1970’s, it was shown [14] how to use the algorithm

to solve montone operator inclusion problems and convex

composite optimization problems. The alternating direction

method of multipliers (ADMM) can also solve composite

optimization problems. It was first presented in [11], [7].

Soon thereafter, it was shown [6] that ADMM is equivalent

to Douglas-Rachford splitting applied to the dual problem.

General sublinear convergence rate estimates for these

methods have just recently been presented in the literature,

see [12], [3], [1]. Under various assumptions, also linear

convergence rates can be established. In the paper by Lions

and Mercier [14], a linear convergence rate was provided

for Douglas-Rachford splitting under (the equivalence of)

strong convexity and smoothness assumptions. Until recently,

further linear convergence rate results have been scarce. The

last couple of years, however, several linear convergence

rate results for both Douglas-Rachford splitting and ADMM

have been presented. These include [4], [2], in which linear

convergence rates for ADMM are presented under various

assumptions. In [13], linear convergence rates are estab-

lished for multiple splitting ADMM. In [16], it is shown

that for a specific class of problems, the Douglas-Rachford

algorithm can be interpreted as a gradient method of a

function named the Douglas-Rachford envelope. By showing

strong convexity and smoothness properties of the Douglas-

Rachford envelope under similar assumptions on the under-

lying problem, a linear convergence rate is established based

on gradient algorithm theory. Very recently [15] appeared

and showed linear convergence of ADMM under smoothness

and strong convexity assumptions using the integral quadratic

constraints (IQC) framework. The rate is obtained by solving
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a series of a small semi-definite programs. Common for all

these linear convergence rate bounds are that they are not

tight for the class of problems under consideration, see [10,

Section IV.B].

In [18], linear convergence of ADMM is established

under more general assumptions than the above. However,

the assumptions are more difficult to verify for a given

problem. Tightness is verified for a 2-dimensional example

in the Euclidean case. In [8], linear convergence for ADMM

on strongly convex quadratic optimization problem with

inquality constraints is established. This rate improves on

the rates presented in [14], [4], [2], [13], [16], [15]. In

[9], the authors generalize, using a completely different

machinery, the results in [8] and in [10] the results are further

generalized. More specifically, [10] generalizes the results in

[8] in the following three ways; (i) a wider class of problems

is considered, (ii) rates for both Douglas-Rachford splitting

and ADMM are provided, and (iii) the results in [10] hold for

general real Hilbert spaces as opposed to the Euclidean space

only in [8]. For the restricted class of problems considered

in [8], the convergence rate bounds in [10] and [8] coincide.

The contribution of this paper is that we show tightness of

the convergence rate bounds presented in [10] for the class

of problems under consideration and for many algorithm

parameters. This is done by formulating examples, both for

Douglas-Rachford splitting and ADMM, for which the linear

convergence rate bounds are satisfied with equality. Similar

lower convergence rate bounds have been presented in [15].

The bounds in this paper cover wider classes of problems

and are less conservative.

II. NOTATION

We denote by R the set of real numbers, Rn the set of real

column-vectors of length n. Further R := R∪{∞} denotes

the extended real line. Throughout this paper H denotes a

real separable Hilbert space. Its inner product is denoted by

〈·, ·〉, the induced norm by ‖ · ‖, and the identity operator

by Id. The indicator function for a set X is denoted by ιX .

Finally, the class of closed, proper, and convex functions

f : H → R is denoted by Γ0(H).

III. PRELIMINARIES

In this section we present, well known concepts, results,

operators, and algorithms that will be extensively used in the

paper.

Definition 1 (Orthonormal basis): An orthonormal basis

{φi}Ki=1 for a (separable) Hilbert space H is an orthogonal



basis, i.e. 〈φi, φj〉 = 0 if i 6= j, where each basis vector has

unit length, i.e. ‖φi‖ = 1.

Hereon, φi will denote elemtens of an orthonormal basis.

Remark 1: The number of elements in the basis (the

cardinality) K is equal to the dimension of the corresponding

Hilbert space, which might be ∞. Also, by definition of a

basis, each element x ∈ H can be (uniquely) decomposed

as x =
∑K

i=1
〈x, φi〉φi, see [20, Proposition 3.3.10].

The reason why we consider separable Hilbert spaces is

the following proposition which can be found, e.g., in [20,

Proposition 3.3.12].

Proposition 1: A Hilbert space is separable if and only if

it has an orthonormal basis.

We will also make extensive use of the following two

propositions that are proven, e.g., in [20, Propsition 3.3.10]

and [20, Theorem 3.3.14] respectively.

Proposition 2 (Parseval’s identity): In separable Hilbert

spaces H, the squarred norm of each element x ∈ H satisfies

‖x‖2 =
K
∑

i=1

|〈x, φi〉|2.

Proposition 3 (Riesz-Fischer): In separable Hilbert spaces

H, the sequence
∑∞

i=1
aiφi converges if and only if

∑∞
i=1

a2i <∞. Then
∥

∥

∥

∥

∥

K
∑

i=1

aiφi

∥

∥

∥

∥

∥

2

=

K
∑

i=1

a2i .

Definition 2 (Strong convexity): A function f ∈ Γ0(H) is

σ-strongly convex if f − σ
2
‖ · ‖2 is convex and σ > 0.

Definition 3 (Smoothness): A function f ∈ Γ0(H) is β-

smooth if β > 0, f is differentiable and if β
2
‖ · ‖2 − f is

convex, or equivalently that

f(x) ≤ f(y) + 〈∇f(y), x− y〉+ β
2
‖x− y‖2 (1)

holds for all x, y ∈ H.

Remark 2: For a function that is σ-strongly convex and

β-smooth, we always have β ≥ σ.

Definition 4 (Proximal operators): The proximal opera-

tor of a function f ∈ Γ0(H) is defined as

proxγf(y) := argmin
x

{

f(x) + 1

2γ ‖x− y‖2
}

.

Definition 5 (Reflected proximal operators): The

reflected proximal operator to f ∈ Γ0(H) is defined

as

Rγf := 2proxγf − Id.

Definition 6 (Fixed-point): A point y ∈ H is a fixed-point

to the (single-valued) operator A : H → H if

y = Ay.

The set of fixed-points to A is denoted by fixA.

Algorithm 1 (Generalized Douglas-Rachford splitting):

The generalized Douglas-Rachford splitting algorithm is

given by the iteration

zk+1 = (1− α)Id + αRγgRγfz
k (2)

where α ∈ (0, 1) and γ > 0 are algorithm parameters.

Remark 3: In the general case, α is restricted to the

interval (0, 1). Under the assumptions used in this paper,

a larger α can be used as well, see [10].

IV. LINEAR CONVERGENCE RATES

In this section, we state the linear convergence rate results

for Douglas-Rachford and ADMM in [10]. The paper [10]

considers optimization problems of the form

minimize f(x) + g(Ax) (3)

where x ∈ H, and f , g, and A satisfy the following

assumptions:

Assumption 1:

(i) The function f ∈ Γ0(H) is σ-strongly convex and β-

smooth.

(ii) The function g ∈ Γ0(K).
(iii) A : H → K is a surjective bounded linear operator.

Under the additional assumption that A = Id (which implies

that K = H), Douglas-Rachford splitting can be applied to

solve (3). It enjoys a linear convergence rate, as shown in

[10, Theorem 1]. This result is restated here for convenience.

Theorem 1: Suppose that Assumption 1 holds and that

A = Id. Then the generalized Douglas Rachford algo-

rithm (Algorithm 1) converges linearly towards a fixed-

point z̄ ∈ fix(RγfRγg) with at least rate |1 − α| +
αmax

(

γβ−1

γβ+1
, 1−γσ
1+γσ

)

, i.e.

‖zk+1 − z̄‖ ≤
(

|1− α|+ αmax
(

γβ−1

γβ+1
, 1−γσ
1+γσ

))k

‖z0 − z̄‖

for any γ > 0 and α ∈ (0, 2

1+max

(

1−γσ
1+γσ ,

γβ−1

1+γβ

) ).

Remark 4: The bound on the rate in Theorem 1 can be

optimized with respect to the algorithm parameters α and γ.

The optimal parameters are given by α = 1 and γ = 1√
βσ

which yields rate bound factor

√
β/σ−1√
β/σ+1

, see [10, Proposition

16].

In the case where A 6= Id, problem (3) can be solved by

applying Douglas-Rachford splitting on the dual problem:

minimize d(µ) + g∗(µ) (4)

where g∗ ∈ Γ0(K), and d ∈ Γ0(K) is defined as

d := f∗ ◦ (−A∗).

If the dual problem (4) satisfies Assumption 1 (with d instead

of f and g∗ instead of g), Douglas-Rachford splitting can be

applied to solve (4), and Theorem 1 would guarantee a linear

convergence rate. Since g ∈ Γ0(K), we have g∗ ∈ Γ0(K)
[19, Theorem 12.2], and we have A in Assumption 1(iii)

equal to Id in (4). The remaining assumption needed to apply

Theorem 1 is that d ∈ Γ0(K) is strongly convex and smooth.

Indeed, this is the case as shown in [10, Proposition 18]. This

result is restated here for convenience of the reader.

Proposition 4: Suppose that Assumption 1 holds. Then

d ∈ Γ0(K) is
‖A∗‖2

σ -smooth and θ2

β -strongly convex, where



θ > 0 always exists and satisfies ‖A∗µ‖ ≥ θ‖µ‖ for all

µ ∈ K.

It is well known [6] that Douglas-Rachford splitting ap-

plied to the dual problem (4) is equivalent to ADMM applied

to the primal problem (3). Therefore, the linear convergence

rate obtained by applying Douglas-Rachford splitting to the

dual problem (4) directly translates to a linear convergence

rate for ADMM. This linear convergence rate bound is stated

in [10, Corollary 2], and restated here for convenience.

Proposition 5: Suppose that Assumption 1 holds and that

generalized Douglas-Rachford is applied to solve the dual

problem (4). Then the Douglas-Rachford splitting algorithm

converges linearly towards a fixed-point z̄ ∈ fix(RγdRγg∗)

with at least rate |1− α|+ αmax
(

γβ̂−1

γβ̂+1
, 1−γσ̂
1+γσ̂

)

, i.e.

‖zk+1 − z̄‖ ≤
(

|1− α|+ αmax
(

γβ̂−1

γβ̂+1
, 1−γσ̂
1+γσ̂

))k

‖z0 − z̄‖

for any γ > 0 and α ∈ (0, 2

1+max

(

1−γσ̂
1+γσ̂ ,

γβ̂−1

1+γβ̂

) ), where

β̂ = ‖A∗‖2

σ and σ̂ = θ2

β .

Remark 5: The parameters that optimize the convergence

rate bound are α = 1 and γ = 1√
β̂σ̂

=
√
βσ√

‖A∗‖2θ2
and the

linear convergence rate bound factor is
√
κ−1√
κ+1

, where κ =
β̂
σ̂ = ‖A∗‖2β

θ2σ , see [10, Corollary 2].

V. TIGHTNESS OF RATE BOUNDS

In this section, we will state examples that show tightness

of the linear convergence rate bounds in Theorem 1 and

Proposition 5 for many choices of algorithm parameters.

A. Primal Douglas-Rachford splitting

To establish that the convergence rate bound provided in

[10, Theorem 1] and restated in Theorem 1 is tight, we

consider a problem of the form (3) with

f(x) =

K
∑

i=1

λi

2
〈x, φi〉2, (5)

g(x) = 0, (6)

A = Id. (7)

Here {φi}Ki=1 is an orthonormal basis for H, K is the

dimension of the space H (possibly infinite), and λi is either

σ > 0 or β > 0, where β ≥ σ. We denote the set of indices

i with λi = σ by Iσ and the set of indices i with λi = β
by Iβ . We require that Iσ 6= ∅, that Iβ 6= ∅, and we get that

Iσ ∩ Iβ = ∅ and Iσ ∪ Iβ = {1, . . . ,K}.

First, we show that f in (5) is finite for all x ∈ H.

Obviously f(x) ≥ 0 for all x ∈ H. We also have for arbitrary

x ∈ H that

f(x) =
K
∑

i=1

λi
2
〈x, φi〉2 ≤ β

2

K
∑

i=1

〈x, φi〉2 =
β

2
‖x‖2 <∞

where the last equality follows from Parseval’s identity.

Therefore f , g, and A in (5), (6), and (7) respectively

have full domains. That f is proper, closed, and convex

holds trivially since λi > 0 for all i, and since f is

finite everywhere and differentiable. Next, we show that

f ∈ Γ0(H) satisfies Assumption 1(i), i.e., that f is β-smooth

and σ-strongly convex.

Proposition 6: The function f , as defined in (5) with λi =
σ for i ∈ Iσ and λi = β for i ∈ Iβ , is σ-strongly convex

and β-smooth.

Proof. We have that

β
2
‖x‖2 − f(x) =

K
∑

i=1

β−λi

2
〈x, φ〉2 =

∑

i∈Iσ

β−σ
2

〈x, φ〉2

which is convex since β ≥ σ. Therefore f is β-smooth

according to Definition 3. We also have

f(x)− σ
2
‖x‖2− =

K
∑

i=1

λi−σ
2

〈x, φ〉2 =
∑

i∈Iβ

β−σ
2

〈x, φ〉2

which is convex since β ≥ σ. Therefore f is σ-strongly

convex according to Definition 2. �

To show that the provided example converges exactly with

the rate given in Theorem 1, we need expressions for the

proximal operators and reflected proximal operators of f and

g in (5) and (6) respectively.

Proposition 7: The proximal operator of f in (5) is

proxγf(y) =

K
∑

i=1

1

1+γλi
〈y, φi〉φi (8)

and the reflected proximal operator is

Rγf (y) =

K
∑

i=1

1−γλi

1+γλ1

〈y, φi〉φi. (9)

Proof. We decompose x =
∑K

i=1
aiφi where ai = 〈x, φi〉

and y =
∑K

i=1
biφi where bi = 〈y, φi〉. Then, for general

γ > 0, the proximal operator of f is given by:

proxγf(y) = argmin
x

{

γ

(

K
∑

i=1

λi

2
〈φi, x〉2

)

+ 1

2
‖x− y‖2

}

= arg min
x=
∑

K
i=i

aiφi







(

K
∑

i=1

γλi

2
a2i

)

+
1

2

∥

∥

∥

∥

∥

K
∑

i=1

(ai − bi)φi

∥

∥

∥

∥

∥

2






= arg min
x=
∑

K
i=i aiφi

{

1

2

K
∑

i=1

(

γλia
2
i + (ai − bi)

2
)

}

=
K
∑

i=1

argmin
ai

1

2

{

γλia
2
i + (ai − bi)

2
}

φi

=
K
∑

i=1

1

1+γλi
biφi =

K
∑

i=1

1

1+γλi
〈y, φi〉φi.



The reflected resolvent for general γ > 0 is given by:

Rγf(y) = 2proxγf (y)− y

= 2

K
∑

i=1

1

1+γλi
biφi −

K
∑

i=1

biφi

=

K
∑

i=1

1−γλi

1+γλi
biφi =

K
∑

i=1

1−γλi

1+γλi
〈y, φi〉φi.

�

The proximal and reflected proximal operators of g ≡ 0
are trivially given by proxγg = Rγg = Id.

Next, these results are used to show a lower bound on the

convergence rate of Douglas-Rachford splitting for several

choices of algorithm parameters α and γ. Before we state

this result, we need a help lemma.

Lemma 1: For x > 0, the function ψ(x) = 1−x
1+x satisfies

ψ(x) ≤ −ψ(y) if and only if y ≥ 1/x.

Proof. We have

ψ(x) = (1− x)/(1 + x) ≤ (y − 1)(1 + y) = −ψ(y)
⇔ (1− x)(1 + y) ≤ (y − 1)(1 + x)

⇔ 2 ≤ 2xy.

�

Theorem 2: The generalized Douglas-Rachford splitting

algorithm (Algorithm 1) when applied to solve (3) with f , g,

and A in (5)-(7) converges exactly with the theoretical upper

bound rate

|1− α|+ αmax
(

1−γσ
1+γσ ,

γβ−1

1+γβ

)

(10)

in the following cases: (i) α ∈ (0, 1] and γ ∈ (0, 1√
βσ

], (ii)

α ∈ [1, 2

1+max

(

1−γσ
1+γσ ,

γβ−1

1−γβ

) ) and γ ∈ [ 1√
σβ
,∞) for some

algorithm initial condition z0.

Proof. For algorithm initial condition z0 = φi the Douglas-

Rachford algorithm evolves according to

zk =
(

1− α+ α 1−γλi

1+γλi

)k

φi

where λi is either σ or β depending on if i ∈ Iσ or i ∈ Iβ .

This follows immediately from Algorithm 1, the expression

of Rγf in Proposition 7, and since Rγg = Id. This converges

with rate factor
∣

∣

∣
1− α+ α 1−γλi

1+γλi

∣

∣

∣
. (11)

We need to show that (11) is equal to (10) for the cases (i)-

(ii). This is the case if 1−α and α 1−γλi

1+γλi
have the same sign

and if 1−γλi

1+γλi
= max(1−γσ

1+γσ ,
γβ−1

1+γβ ). First note that Lemma 1

implies that

max(1−γσ
1+γσ ,

γβ−1

1+γβ ) = max(ψ(γσ)),−ψ(γβ))

=

{

ψ(γσ) if γ ≤ 1√
βσ

−ψ(γβ) if γ ≥ 1√
βσ

=

{

1−γσ
1+γσ if γ ≤ 1√

βσ
γβ−1

1+γβ if γ ≥ 1√
βσ

(12)

where ψ is defined in Lemma 1. This implies that

max(1−γσ
1+γσ ,

γβ−1

1+γβ ) ≥ 0 (13)

since 1−γσ
1+γσ ≥ 0 when γ ≤ 1√

βσ
and γβ−1

1+γβ ≥ 0 when γ ≥
1√
βσ

(since β ≥ σ). Next, we use these observations to show

the results for the two cases.

Case (i): α ∈ (0, 1] and γ ∈ (0, 1√
βσ

]

We choose φi with i ∈ Iσ to get that the rate (11) in the

example is
∣

∣

∣
1− α+ α 1−γλi

1+γλi

∣

∣

∣
=
∣

∣

∣
1− α+ α 1−γσ

1+γσ

∣

∣

∣

= 1− α+ αmax(1−γσ
1+γσ ,

1−γβ
1+γβ )

= |1− α|+ αmax(1−γσ
1+γσ ,

1−γβ
1+γβ )

where the second equality follows from (12) since γ ∈
(0, 1√

βσ
], from (13), and since α ∈ (0, 1]. That is, (11)

coincides with (10).

Case (ii): α ∈ [1, 2

1+max

(

1−γσ
1+γσ ,

γβ−1

1−γβ

) ) and γ ∈ [ 1√
σβ
,∞)

We choose φi with i ∈ Iβ to get that the rate (11) in the

example is
∣

∣

∣
1− α+ α 1−γλi

1+γλi

∣

∣

∣
=
∣

∣

∣
1− α+ α 1−γβ

1+γβ

∣

∣

∣

= α− 1 + αmax(1−γσ
1+γσ ,

1−γβ
1+γβ )

= |1− α|+ αmax(1−γσ
1+γσ ,

1−γβ
1+γβ )

where the second equality follows from (12) since γ ∈
[ 1√

βσ
,∞), from (13), and since α ≥ 1. That is, (11)

coincides with (10) also in this second case. This concludes

the proof. �

The convergence rate for the example given by f and g in

(5) and (6) respectively coincides with the upper bound on

the convergence rate in [10, Theorem 1] (which is restated

in Theorem 1). The bound in [10, Theorem 1] is therefore

tight for the class of problems under consideration and

for the combination of algorithm parameters specified in

Theorem 2. Especially, the convergence rate bounds for the

optimal parameters given by α = 1 and γ = 1√
βσ

are tight.

B. Dual Douglas-Rachford splitting (ADMM)

This section concerns tightness of the rate bounds when

Douglas-Rachford splitting is applied to the dual problem

(4), or equivalently, when ADMM applied to the primal

problem (3). To show tightness in this case, we consider

the following problem

f(x) =

K
∑

i=1

λi

2
〈x, φi〉2 (14)

g(x) = ιx=0(x) (15)

A(x) =

K
∑

i=1

νi〈x, φi〉φi (16)

where λi = σ and νi = θ > 0 if i ∈ Iσ and λi = β
and νi = ζ > θ if i ∈ Iβ , where Iσ and Iβ are the same



as before. That A is linear follows trivially. That it is self-

adjoint, bounded, and surjective is shown in the following

proposition.

Proposition 8: The linear operator A defined in (16) is

self-adjoint, i.e. A = A∗, and for every x ∈ H, we have

θ‖x‖ ≤ ‖A(x)‖ ≤ ζ‖x‖. (17)

Further ‖A‖ = ‖A∗‖ = ζ.

Proof. We start by showing that A is self-adjoint. We have

〈A(x), µ〉 =
〈

K
∑

i=1

νi〈x, φi〉φi,
K
∑

i=1

〈µ, φi〉φi
〉

=
K
∑

i=1

〈νi〈x, φi〉φi, 〈µ, φi〉φi〉

=
K
∑

i=1

〈〈x, φi〉φi, νi〈µ, φi〉φi〉

=

〈

K
∑

i=1

〈x, φi〉φi,
K
∑

i=1

νi〈µ, φi〉φi
〉

= 〈x,A(ν)〉

where moving of summations are due to orthogonality of φi.
Next we show the first inequality in (17):

‖A(x)‖ =

∥

∥

∥

∥

∥

∥

θ
∑

i∈Iσ

〈x, φi〉φi + ζ
∑

i∈Iβ

〈x, φi〉φi

∥

∥

∥

∥

∥

∥

≥ θ

∥

∥

∥

∥

∥

K
∑

i=1

〈x, φi〉φi
∥

∥

∥

∥

∥

= θ‖x‖

since 0 < θ ≤ ζ. The second inequality in (17) is proven

similarly. Finally, we show ‖A‖ = ζ. We have already shown

that ‖A(x)‖ ≤ ζ‖x‖ for all x ∈ H, i.e., that ‖A‖ ≤ ζ. By

definition of the operator norm, we also know that ‖A‖ ≥
‖A(x)‖ for all x ∈ H with ‖x‖ ≤ 1. Choosing x = φj
(which satisfies ‖x‖ = ‖φj‖ = 1) for any j ∈ Iβ (i.e. j with

νj = ζ) gives

‖A‖ ≥ ‖A(φj)‖ =

∥

∥

∥

∥

∥

K
∑

i=1

νi〈φj , φi〉
∥

∥

∥

∥

∥

= ‖νj‖ = ζ.

Thus, ‖A‖ = ζ and the proof is complete. �

This result implies that the assumptions in [10, Corollary

2] (and Proposition 5) are met by f , g, and A in (14),

(15), and (16) respectively. The bound on the convergence

rate from [10, Corollary 2] (and restated in Proposition 5)

is therefore valid. To show that this bound is tight for the

class of problems under consideration, we need the following

explicit characterization of d:

d(µ) := f∗(−A∗µ) = f∗(−Aµ)
= sup

x
{〈−Aµ, x〉 − f(x)}

= − inf
x

{f(x) + 〈Aµ, x〉}

= − inf
x

{

K
∑

i=1

λi

2
〈x, φi〉2 + 〈

K
∑

i=1

νi〈µ, φi〉φi, x〉
}

= − inf
ai

{

K
∑

i=1

λi

2
〈

K
∑

i=1

aiφi, φi〉2

+ 〈
K
∑

i=1

νi〈µ, φi〉φi,
K
∑

i=1

aiφi〉
}

= −
K
∑

i=1

inf
ai

{

λi

2
〈aiφi, φi〉2 + 〈νi〈µ, φi〉φi, aiφi〉

}

= −
K
∑

i=1

inf
ai

{

λi

2
a2i + νi〈µ, φi〉ai

}

= −
K
∑

i=1

{

(νi〈µ, φi〉)2
2λi

− (νi〈µ, φi〉)2
λi

}

=

K
∑

i=1

(νi〈µ, φi〉)2
2λi

=

K
∑

i=1

ν2

i

2λi
〈ν, φi〉2

where the decomposition x =
∑K

i=1
aiφi with ai = 〈x, φi〉

is used, and the optimal ai = −νi〈µ, φi〉/λi. The function d
has exactly the same structure as the function f but with λi
in f in (5) replaced by ν2i /λi in d. The function g∗ is, for

all µ ∈ H, given by

g∗(µ) = sup
x∈H

{〈µ, x〉 − ιx=0(x)} = 〈µ, 0〉 = 0.

This implies that the dual problem (4) with f , g, and A
specified in (14), (15), and (16) has exactly the same structure

as the primal problem (3) with f and g specified in (5)

and (6) respectively and with A = Id . The only things

that differ are the scalars that multiply the quadratic terms

in the functions f and d respectively. Therefore, we can

immediately state the following corollary to Theorem 2.

Corollary 1: Let f be given by (14), g be given by (15),

and A be given by (16). Then the generalized Douglas-

Rachford algorithm applied to solve the dual problem (4)

(or equivalently ADMM applied to solve (3)) converges as in

Theorem 2 with β and σ in Theorem 2 replaced by β̂ = ‖A‖2

σ

and σ̂ = θ2

β respectively.

The exact rate provided in Corollary 1, coincides with rate

bound in [10, Corollary 2] and Proposition 5. Therefore,

we conclude that the rate bound in [10, Corollary 2] for

ADMM on the primal problem, or equivalently for Douglas-

Rachford splitting on the dual problem, is tight for the

class of problems under consideration for many algorithm

parameter choices. Especially, the bound is tight for the

optimal paramters α and γ, as in the primal Douglas-

Rachford case.



VI. CONCLUSION

Recent results in the literature have shown linear con-

vergence of Douglas-Rachford splitting and ADMM under

various assumptions. In this paper, we have shown that the

linear convergence rate bounds presented in [10] are indeed

tight for the class of problems under consideration.
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