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ABSTRACT
A feedback-based scheme for cooperative content distribu-
tion for mobile systems aimed at reducing energy and li-
censed spectrum usage is presented. The paper is motivated
by the problems in implementing peer-to-peer based content
distribution in mobile networks due to the risks of unfair en-
ergy expenditure. A technique for incentivizing cooperation
and for enforcing agreements between peers is discussed as
well as the dynamics of the resulting barter-like economy.
Rationale for a heuristic solver is provided together with
simulation-based analysis of expected savings. The scheme
is evaluated for cases with deterministic as well as random
initial conditions.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed applications

Keywords
Cooperative, content distribution, peer-to-peer, feedback,
optimization

1. INTRODUCTION
As mobile networking grows increasingly pervasive, the

limited resources are becoming the focus of much debate. A
recent FCC technical report [16] projects that the US will
run out of radio spectrum as early as 2013 and battery life
is a constant concern when designing mobile phones and
pads. Reducing the load on the mobile network infrastruc-
ture, such as base stations and backhaul links, is therefore
essential in order to support the demands of coming years.

An especially relevant scenario is the distribution of mu-
sic, video and applications from centralized services, such as
Google Play or the Apple iTunes Store. When a popular
artist releases a new album or when a commonly used appli-
cation is updated, it can be assumed that repositories will
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see a significant rise in requests for those data objects. That
many clients requests the same information suggests that
there could be something to gain from cooperation among
peers.

While peer-to-peer assisted mechanisms [4][12] are com-
monly used in content distribution schemes to off load net-
work links and central repositories, they are still rarely ap-
plied in the mobile case out of concern for the energy con-
sumption involved. While the feedback mechanisms used
in e.g. BitTorrent are designed to reward cooperation, the
transient nature of mobile networks can deny a client from
being able to benefit from accumulated good-will. There is
also the risk of ”leeching”, that is clients taking advantage
of other peers without contributing anything in return.

For a peer-to-peer solution targeted at mobile networks to
make sense, it will have to take the limited energy resources
of a mobile phone client into account. It will also have to
provide guarantees that cooperation will pay off within a
time period relevant to the client and protect against leech-
ing. As shown by game theory [6], lack of trust between
parties will prevent cooperation from taking place.

Trust is however not enough, there must also be some
form of benefit from participating in the cooperative scheme.
Providing means to reduce energy consumption, a premium
resource for mobile clients, seems like an attractive strategy.

This paper shows how cost savings, both in terms of en-
ergy and long distance traffic, can be used to incentivize
cooperation between mobile clients and how a mechanism
for enforcing agreements can be implemented in order to es-
tablish trust between parties. The model proposed here has
similarities with bartering economics [14], a type of trade of-
ten used where there are no trustworthy forms of currency.

The scenario used as a motivating example is the distribu-
tion of files to a population of mobile clients, for example a
firmware upgrade or a new version of a popular application.
The clients involved are assumed to have a primary connec-
tion to a remote service offering this file, reachable through
an expensive long distance link (e.g. 3G or 4G), and the
capability for local connections with co-located clients using
cheaper communication forms (e.g. WLAN or Bluetooth).

1.1 Outliner of the paper
Section 3 discusses the issues with making clients cooper-

ate in an environment where they could be taken advantage
of, how to incentivize cooperation, and outlines a mechanism
to enforce agreements. A model of the resulting system is
introduced in Section 4. Section 5 discusses the dynamics
of fair exchanges and introduces the swap graph as a tool



for discovering opportunities for cooperation. A baseline al-
gorithm for arbitrating mutually beneficial exchanges is dis-
cussed in Section 6, but due to its significant computational
requirements, a heuristic alternative is presented in Section
7. The algorithm is then applied to a small example to illus-
trate some of its properties in Section 7.4 and 7.5. Section 8
studies how the size of the problem affects the solution, how
it can be decomposed into subproblems and compares the
results with those obtained through the method in [17]. The
assumption on initial state is relaxed in Section 9. Sections
10 and 11 summarize the findings and discuss some ideas for
future extensions to this work.

2. RELATED WORKS
Mobile implementations of peer-to-peer schemes have been

considered for some time now, though initially primarily as
a way to distribute content in pure ad-hoc networks [11] [7]
and not as an energy conservation measure.

Later publications, such as [15] [17] [16], are more con-
cerned with the resource related challenges specific to mo-
bile peer-to-peer networking. Energy and spectrum usage
is a common concern, though the focus is typically on the
population as a whole or the average case, rather than the
individual.

Exploiting multi-mode communications to save energy is
discussed as an off-line optimization problem in [17], which
uses a detailed energy model and a game theoretic approach
to derive an optimal dissemination policy. Fairness is explic-
itly discussed, but the method does not account for changing
populations or how to deal with leeching.

Barter-like economics arise in a variety of seemingly un-
related fields, such as kidney exchanges [5] or apartment
contract trading [14]. These particular examples differ from
the content distribution scenario in that there is no central
repository (i.e. cooperation is the only option) and that once
a trade has occurred, clients will withdraw from the system.
The graph structure used to find chains of trades in [5] is
analyzed through stochastic methods that could be adapted
to analyzing data object trades.

3. INCENTIVIZING COOPERATION
It can be shown through game theory that two rational

decision makers will choose not to cooperate if there is the
possibility of one of them taking advantage of the other.
This case is often referred to as the “Prisoner’s Dilemma” [6]
and illustrates the importance of trust between parties in a
voluntary cooperation scenario.

Translated into the terms of a cooperative file retrieval
scenario, if two geographically co-located mobile clients, A
and B, seek to retrieve two data objects both clients want
from a remote service (typically a file server), they could
could potentially cooperate by sharing the cost, in terms of
energy or traffic fees, for long distance traffic.

Let wl denote the cost of accessing the data from a remote
source and ws the cost of communicating with a co-located
source. Accessing data requires energy expenditure by both
sender and receiver, meaning that one local access incurs a
cost of ws for both parties. The energy expended by the
remote server is not accounted for in this example. Assume
also that wl � ws.

A and B can now independently choose to either be co-
operative, that is, allowing the other party to copy a data

object, or uncooperative, that is, not giving the other client
access. The outcome of the possible scenarios in terms of
cost to retrieve both objects are listen in the table below.

Cost for (A,B) B cooperative B uncooperative
A cooperative (wl + 2ws, (2wl + ws,

wl + 2ws) wl + ws)
A uncooperative (wl + ws, (2wl, 2wl)

2wl + ws)

If both choose to cooperate, the costs will consist of one
repository access to fetch one object and then two short
range accesses, one to deliver the object to the peer and
one to fetch the other object from the same. In case only
one chooses to cooperate, both will start out fetching one
object from the repository, but only one will be able to fetch
from the peer. The other will then have to perform another
repository access to complete the set.

The Nash equilibrium [6] of this game is that both A and
B choose to be uncooperative. Two principle strategies can
be seen that would resolve this problem, either

• ws must be reduced to 0, thereby making it “free” to
risk cooperation or

• the off-diagonal choices must be eliminated, making it
impossible for one party to exploit the other.

The first strategy models the behavior of traditional peer-
to-peer networks, where sharing is considered to be without
cost [4]. Even if a participant is taken advantage of the
majority of the time, the occasional win is achieved at no
cost. In the mobile setting, the risk of running out of en-
ergy or loosing contact with surrounding parties makes such
assumptions unrealistic.

It is therefore necessary that the exchange system pro-
vides potential participants with guarantees that the bene-
fits outweigh the costs. In the general case, this would re-
quire appropriate models for user behavior, which is outside
the scope of this paper. A simpler scenario can be achieved
by requiring that all transactions are bilaterally either co-
operative or uncooperative, thereby effectively resorting to
the second strategy above.

The question of whether or not to allow multicast transfers
is problematic. While publications have shown that this
improves the efficiency of cooperation[16][17], there is the
risk that clients will opt out of the exchange system and just
listen to multicasts, essentially re-introducing a Prisoner’s
Dilemma like situation. This work therefore assumes that
all communication is unicast between two parties.

Furthermore, it is assumed that an exchange system can
enforce the adherence to agreements between clients, which
will in the case of data object exchanges be referred to as fair
exchanges. Exactly how this is done is of less importance
to the results presented, but for the sake of feasibility a
prototype method is outlined below.

3.1 Prototype contract mechanism
Assume a set of parties C have agreed to exchange a set

of objects D according to some scheme. The agreement,
or contract, in the form of a list of tuples denoting (sup-
plier, receiver, object) ∈ C × C × D, is handed over to an
exchange system E, a physical 3rd party in the form of a
remote service. E creates a set of encryption keys, one for
each unique object in the agreement. The suppliers of each



object are then given the corresponding keys, which they
then use to encrypt the objects, after which they transmit
them. When all receivers have signaled to E that they have
indeed received the complete transmissions, E sends out the
appropriate decryption keys to the participants.

4. SYSTEM MODEL
Consider a population of mobile terminals capable of multi-

mode communication, that is, able to use several wireless
communication standards. Specifically, they support both
an expensive form of long range communication (e.g. 3G in
the form of UMTS or W-CDMA) and a less expensive short
range alternative (e.g. WLAN or Bluetooth). Building on
the notation introduced in Section 3, let C = {ci, i = 1..Nc}
denote a subset of the population, such that all are within
short range communication distance of each other. Further-
more, let D = {dj , j = 1..Nd} denote a set of data objects
that all clients desire to retrieve. These objects could be
individual files or parts of one larger file, split into parts to
facilitate distribution. For the sake of simplicity, assume all
parts are of equal size.

All parts of D are available from a central repository ac-
cessible only over long range communication. The nominal
cost for a client to download all parts of D is thus Ndwl
but clients can cooperate by trading objects via short range
communication and thereby reduce their total transfer cost.
Because of the cost associated with sharing a data object
with another client, it is assumed that a client will only pro-
vide a requested object if it is guaranteed to get an object in
return, referred to as a fair exchange. This rule is referred
to as the exchange policy.

The client population C, the target data set D, and the
policy P under which trades take place constitute an Ex-
change System E = (C,D, P ), with the objective of allow-
ing clients to minimize their data retrieval costs. The state
of the system is the contents of the client side caches that
contain the data objects once a client has retrieved it. When
an object is exchanged between two clients it is copied, the
original remains with the source.

In this formulation E implements a centralized decision
mechanism with complete knowledge of the system state.
The system dynamics evolve in discrete time steps of inde-
terminate length, but with the following logical sub-steps
discovery, arbitration and effectuation that are repeated in
a loop.

• Discovery. During discovery, clients join the exchange
system and submit their current state. Let κ(c) be a
function that returns the data objects currently pos-
sessed by the c and cardinal(κ(c)) a function that re-
turns the number of elements in κ(c).

• Arbitration. Once the system state is established,
the exchange system decides which trades that will oc-
cur. Clients not part of a trade will perform a default
action, that can be either fetching an object from the
central repository or passing (i.e. doing nothing).

• Effectuation. Finally all decisions are carried out.
The completion of these actions marks the end of the
time step, after which next immediately starts with a
new discovery phase.

Clients can be expected to join or leave the exchange sys-
tem from one time step to the next, either voluntarily (e.g.
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Figure 1: A swap graph for the system
A[1, 2], B[1], C[3]

having completed the data set or user command) or invol-
untarily (e.g. through loss of connection), making repeated
discovery necessary. By choosing to pass in the arbitration
phase, a client can bide its time, hoping for a more beneficial
situation to arise in a future time step.

5. THE DYNAMICS OF FAIR EXCHANGES
The data object exchange scenario differs from many types

of bartering economics primarily in that a client is typically
interested in several trades rather than just one. It will
withdraw from the exchange system once it completes its
set of data objects. This removes an attractive cooperation
partner, one who possesses all the objects desired by the
other clients. This is a key complication that an effective
exchange policy must take into account.

To keep the pool of cooperation partners as large as pos-
sible, it is important to prevent some from completing their
sets far ahead of the rest. Making client states (i.e. the con-
tents of the client side object caches) as diverse as possible
will further increase the probability that any one client will
find a peer that can provide desired objects, while needing
those already in possession.

5.1 The swap graph
To further discuss the properties of these systems, the

concept of the swap graph will be used. This is a directed
graph representation of what possible trades are possible,
where each vertex represents a client and each edge repre-
sents a potential object transfer. If client A has an object
desired by client B, then the swap graph will contain an
edge from B to A, labeled with the object in question, to
indicate the dependency. As there can be multiple depen-
dencies between two clients, there can be multiple edges but
with different labels.

As an example, consider a case with the client set {A,B,C}
and the data object set {1, 2, 3}. In the example, let client
A possess objects 1 and 2, represented by the short hand
notation A[1, 2]. Assume now that the total system state is
A[1, 2], B[1], C[3]. The corresponding swap graph is seen in
Figure 1. Possible fair exchanges are seen as cycles in the
graph, with in total four in the example, as detailed in Fig-
ure 2. In this case they are mutually exclusive, which leads
to the central question of arbitration, that is determining
what exchanges should take place in order to optimize the
objectives?
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Figure 2: The cycles given by the swap graph in
Figure 1. Each of the cycles are mutually exclusive,
meaning only one of them can take place. Arbitrat-
ing this conflict is a responsibility of the exchange
system.
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Figure 3: The number of cycles grows very fast with
the dimensions of the system. This plot shows the
average number of cycles over 50 simulations when
all clients are assigned randomly chosen states.
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Figure 4: Swap graphs for the special case discussed
in Section 5.2. The system is initialized with the
state A[1], B[2], C[3], as shown in Graph (i), which al-
lows for a 3-way exchange involving all clients, lead-
ing to the situation depicted in Graph (ii).

In its entirety, the problem is a multistep decision prob-
lem, where in each step determining the set of exchanges to
perform involves finding the best set of non-overlapping cy-
cles in the graph, a version of the classic NP-hard maximum
set packing problem [10]. The computational complexity in
each step grows as 2Ncycles and since the number of cycles
grows very fast with set sizes, as shown in Figure 3 , finding
the globally optimal solution is intractable for realistic sce-
narios involving hundreds of clients. However, a possible key
to alternative strategies presents itself by studying a special
case of Nc = Nd.

5.2 Nd = Nc

Consider a case with Nc = Nd = 3, with the system state
A[1], B[2], C[3] and the corresponding swap graph shown
in Figure 4-i. After trivially selecting the exchanges, the
state becomes A[1,3], B[1,2], C[2,3], with the swap graph in
Figure 4-ii. This gives another trivial decision that ends the
scenario (as all clients are done) with an optimal cost for all
clients.

The two following observations can now be made:

1. The trivial optimal strategy above is always possible
when all clients have the same number of objects and
every object occurs the same number of times in the
system.

2. The solution is not unique in general, there might be
many other ways to achieve the same optimal global
cost.

Let

nc = cardinal(κ(c))

and

fd =
∑
c∈C

Id(c)

where Id(c) is an indicator function defined as

Id(c) =

{
0 if d 6∈ κ(c)

1 if d ∈ κ(c)

Furthermore, let

n̄ =
1

Nc

∑
c∈C

nc and f̄ =
1

Nd

∑
d∈D

fd



Using this notation, the condition from Observation 1 can
be formalized into

ni = nj ,∀i, j ∈ C and fk = fl, ∀k, l ∈ D (1)

from here on referred to as Condition A.
Consider now the function

J =
∑
c∈C

(nc − n̄)2 +
∑
d∈D

(fd − f̄)2 (2)

The quantity J can be seen to denote the distance to A, or
if it is assumed that the optimal trajectory will be followed
once A is fulfilled, the distance to the optimal trajectory.

The quantities
∑
c∈C(nc − n̄)2 and

∑
d∈D(fd − f̄)2, es-

sentially the sample variance of the client cache sizes and
object frequencies respectively, can be interpreted to model
two aspects of how well the exchange system will work.

If the cache size variance is high, then some clients will
finish way ahead of others, thereby removing many objects
from the system. It therefore makes sense to prioritize clients
with few objects when arbitrating exchanges.

If the frequency variance is high, some objects are rare,
meaning few clients can offer them, while some are frequent,
meaning few clients want them. Both cases will lead to
fewer possible exchanges involving these objects. It therefore
makes sense to try to keep object frequencies uniform.

6. BASELINE ALGORITHM
Using Equation (2), it is possible to formulate a one-step

decision algorithm based on minimizing J . Basing decisions
on only the currently measurable state of the system, in
this case the contents of the client side caches, is a feedback
control approach. This has the advantage of being robust
to disturbances, such as failed transfers or clients arriving
to or departing from the exchange system. A pre-calculated
multistep decision strategy would, on the contrary, have to
be recalculated if for instance the state of the system suffers
an unforeseen perturbation, such as a failed object transfer
or clients leaving E.

Let X denote the system state, u denote a set of exchange
agreements to carry out and J(X|u) denote the cost function
evaluated for the state after X has been subjected to u.
Furthermore, let ρ(X) be a function that maps the system
state to a set of possible exchange agreements. The feedback
arbitration policy can now be written as

u = arg min
u∈ρ(X)

J(X|u) (3)

Because of the combinatorial nature of the optimization
problem used to calculate (3), designing the function ρ() is
non-trivial. The formulation is very close to the maximum
set packing problem and as discussed in Section 5.1, the
number of possible decisions grow unmanageably large even
for modestly sized problems. However, it can still useful to
compare other solvers with the result given if ρ() is assumed
to generate all possible agreements, hereon referred to as the
baseline algorithm.

7. HEURISTIC SOLVER
In order to further study this type of exchange system, a

simple heuristic solver has been developed. Its main char-
acteristics are that

• it is deterministic, that is, a given state always yields
the same decision,

• it is guaranteed to find at least one exchange unless
there are none, which is trivial to test for, and

• it is computationally cheap.

7.1 Heuristic cycle finding
The heuristic solver uses a steepest decent style graph

walking method for finding cycles. Let

Jc(X) =
∂J(X)

∂nc
(4)

Jd(X) =
∂J(X)

∂fd
(5)

and let G′ be the pruned swap graph, obtained by repeatedly
searching G for nodes with zero in-degree or zero out-degree
[8], which obviously cannot be part of a cycle, stopping when
no more nodes can be removed. It can easily be seen that
the all connected subgraphs in G′ contain at least one cycle.
As all nodes have outgoing edges with no edges to itself,
there are no ”dead ends” in the graph and since the graph
is finite a walk must eventually end up in a node that has
been visited before.

Because there can be multiple edges between nodes, the
algorithm must keep track of both visited nodes and edges.
This is done with a data structure called trace, a list of
alternating node and edge elements.

A pseudocode representation of the algorithm used for
finding cycles is then given as Algorithm 1. Sort() or-
ders elements in a list according to their unique text labels,
which is done in order to make the algorithm determinis-
tic. FirstElement() and LastElement() returns the first
and last elements of a list respectively and List() creates
a list from the arguments. The function gradJ calculates
Jc(X) +Jd(X), using for c the end node of the edge and for
d the data object associated with the edge. The last opera-
tion removes the preamble of the trace, as the initial parts
might not be part of the cycle.

7.2 A heuristic ρ()
Building on the heuristic cycle finder, a heuristic ρ(), de-

noted ρH(), can then be defined. Let HeuristicFind be the
heuristic cycle finder algorithm defined in Section 7.1. A
pseudocode representation of ρH() is shown as Algorithm 2.

The exchange agreements to be carried out are generated
through repeatedly searching for cycles in G and removing
the nodes in found cycles until the remaining graph is empty.

7.3 Default actions
The clients not part of any exchange are still able to act,

though their actions are limited to either

• fetching an object from the remote repository, or

• passing (i.e. doing nothing).

The decision comes down to if the client is willing to wait
and see if a better situation arises or if it should instead pay
for immediate access to a data object. In this work, this is
modeled by a client parameter named skipcount that decides
how many times a client that is not part of any exchange
agreement after arbitration is willing to wait, essentially a



Input: pruned swap graph G′

Output: a cycle in G′

begin
current ←
FirstElement(Sort(GetNodes(G′)))

trace ← List(current)
done ← false
while not done do

Es ← Sort(GetOutEdges(current))
Gs ← List()

mingrad ← MaxFloat()

foreach e in Es do
v ← SourceNode(e)
d ← DataObject(e)
u ← ReceiverNode(e)
if GradJ(v, d, u) < mingrad then

next ← v
mingrad ← GradJ(v, d, u)
append d to trace

end

end
if next in trace then

done ← true
else

current ← next
end
append next to trace

end
while FirstElement(trace) 6=
LastElement(trace) do

remove first element from trace
end
return trace

end

Algorithm 1: Pseudocode representation of the
heuristic cycle finder.

form of time out. An important special case arises when
a client enters the exchange system with an empty cache.
It will then have to download at least one object from the
remote repository in order to have something to trade with.

As the other parts of the algorithm aim to minimize J ,
it would seem appropriate that the default actions do the
same. This can be most easily done by simply fetching the
least frequent object currently not already possessed by the
client. In order to preserve determinism, the candidates are
sorted by frequency first and label second.

7.4 A 10 x 10 example
The performance and behavior of the algorithm have been

studied through simulations in an environment built in Python
[3] using off-the-shelf modules for graph algorithms [2] and
plotting [1]. The source is provided separately [13].

Consider a scenario with 10 clients and 10 data objects,
where all clients start out empty. Assume that wl = 1 and
that ws is sufficiently small that it can be approximated to 0
under a policy of fair exchanges. Figure 5 shows how J , the
total communication cost for the entire system and the worst
case individual client communication cost evolve over time,
stopping when all clients have all objects. Communication
costs are normalized so that the nominal case where all ob-
jects are fetched from the remote repository corresponds to

Input: A swap graph G
Output: A list of traces representing exchange

agreements
begin

u← List()

done← false
while not done do

G′ ← Prune(G)

upart← List()

if not G′ empty then
upart← HeuristicFind(G′)

else
done← true

end
remove nodes in upart from G
append upart to u

end
return u

end

Algorithm 2: Pseudocode representation of the
heuristic decision function ρH() where Heuris-

ticFind() is a call to Algorithm 1.

a cost of one. A plot showing how many clients are involved
in trading in each step is also provided. The heuristic solver
is used and clients use a skipcount of 0.

As the initial state satisfies Condition A, the optimal tra-
jectory is known and would give a worst case individual cost
of one remote access, resulting in a normalized individual
cost of 1/Nd = 0.1, and a normalized total cost also of
1/Nd = 0.1. The heuristic solver is not able to achieve
these costs, but manages to reduce the total cost by 90%
and the worst individual cost with 60%, compared with the
non-cooperative case.

7.5 Influence of skipcount
By varying the skipcount parameter, it is possible to make

a tradeoff between cost and latency. As expected, increas-
ing the skipcount generally decreases the resulting total cost,
but finding the point after which increasing it further pro-
vides no benefit has so far only been done experimentally.
Figure 6 shows a repetition of the setup from Section 7.4,
but with a skipcount of 2. In this case the optimal cost is
nearly achieved, but the scenario takes more time steps, as
can be seen in the last time step where the individual cost
increases by one remote access. The total cost also increases
but negligibly so.

8. SET SIZES AND PROBLEM DECOMPO-
SITION

The problem lends itself to decomposition into parts, as
evident when studying the results in Figure 7. This shows
the worst case individual cost for different combinations of
Nd and Nc (using the heuristic solver and a skipcount of 10
in all cases) and it can be seen that the level jumps approx-
imately each time Nd crosses a multiple of Nc. This can be
explained by thinking of the scenario as a combination of
sub-scenarios.

8.1 Case 1: Nd < Nc
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Figure 5: System trajectories for the example in
Section 7.4. The costs have been normalized so that
a cost of 1 corresponds to the worst case cost, that
is the case where all objects are fetched from the
remote repository. For the individual cost the nor-
malization factor is 1/(Ndwl) and for the total cost
the factor is 1/(NcNdwl).
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Figure 6: System trajectories for the example in
Section 7.5, with the skipcount parameter set to 2,
resulting in lower individual and total costs at the
expense of more time steps. Only a single client is
forced to do two repository accesses, which is seen
in the slight increase of worst case cost in the final
time step.
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Figure 7: The worst case individual costs (non-
normalized) for scenarios of various sizes, all us-
ing skipcount of 10 which has experimentally been
proven sufficient for all the cases in this simulation
to reach their lowest costs. wl is set to 1 (i.e. the cost
is the same as the number of repository accesses).

If there are more clients than data objects, the clients can
divide themselves into groups, ideally of size Nd, and apply
the nominal strategy in parallel. Each client should only
need to pay for one repository access.

8.2 Case 2: Nd > Nc

If there are more data objects than clients, then the data
objects can be divided into groups, ideally of size Nc and
handled in serial manner. Each client must pay for one
repository access per serial group.

From this it can be concluded that

dNd/Nce (6)

is a reasonable predictor for the worst case individual num-
ber of remote accesses using this solver or with words, a
group of Nc clients can often cooperate around a set of
Nd objects allowing each client to only pay for once re-
mote repository access. If the remainder is non zero, some
clients are likely to be prohibited from trading for one ob-
ject, thereby raising the worst case number of accesses by
one. Because of the above listed decomposition properties
of the problem, (6) is also the lower bound on the worst case
communication cost.

8.3 Comparison with a feed forward approach
The method presented in [17] shows results with energy

savings from approximately 60% (unicast case) to 95% (mul-
ticast case), when sufficiently many clients are involved.
The results are not immediately comparable with those pre-
sented in this paper, as the energy consumption of the IEEE
802.11b WiFi traffic is not sufficiently low to justify the as-
sumption that wl � ws. However, the newer IEEE 802.11n
standard has been shown to be in the order of a factor 10
times as efficient in J / bit as 802.11b [9], making the as-
sumption more realistic.



Nc

4 6 8 10 12 14 16

Nd

4
6

8
10

12
14

16

a
v
g
 m

a
x
 c

o
st

2

3

4

5

6

Figure 8: Average worst case individual cost over 20
simulations (skipcount is 10).

Using (6) as a predictor for the number of repository ac-
cesses, the cost to download Nd objects can be written as

dNd/Ncewl + 2(Nd − dNd/Nce)ws (7)

Assuming ws is low enough to be negligible and normalizing
with the nominal cost ofNdwl, the predicted normalized cost
under the mechanism proposed in this paper is dNd/Nce/Nd,
meaning that given Nc ≥ Nd, the cost scales with 1/Nd.
As such the predicted energy savings are on par with those
presented in [17], but note that those results would also be
better if IEEE 802.11n had been used.

The main advantage the of feedback method in this paper
is that does not require off-line optimization and therefore
is able to handle uncertainties better, as show in Section 9.

9. RANDOM INITIAL STATE
Relaxing the assumption on the initial system state will

give further insight into how the feedback based solver will
handle a more realistic scenario. Clients might enter the sys-
tem with some data objects already collected, others might
join with empty caches at a later stage. Since the algo-
rithm assumes all relevant information is part of the current
system state, the exact events leading up to this point are
irrelevant.

The result of a sequence of simulations, 20 for each (Nd, Nc)
pair, Figure 8 shows the average max cost in a system with
a random initial state, where each client possesses a ran-
dom number of objects (uniformly distributed in [0, Nd]).
The objects are in each case also picked at random, with
uniform probability.

On average, a client in these simulations enters the sys-
tem with half of the objects already in possession. It would
therefore be reasonable to expect that the expected max
cost would be lower than the dNd/Nce rule would predict,
but the simulations suggest otherwise. The explanation for
this is that some clients finish their sets early, thereby forc-
ing others to pay for many repository accesses, which in turn
increases the max costs.

10. CONCLUSIONS
This paper has presented a proposal for how to build a

peer-to-peer content distribution scheme for mobile client by
providing mechanisms for enforcing cooperation agreements.
The resulting barter trade like economy has been analyzed
using a heuristic mechanism for finding cooperation groups.
The algorithm is based on the control of a cost function,
which minimization is considered to benefit the economy.

Simulations indicate that the traffic to central nodes can
be reduced by a factor of dNd/Nce/Nd, which is beneficial
both for the service provider and the clients, assuming re-
mote traffic is more expensive in terms of energy or traffic
fees.

It can also be seen that a measure of patience, that is a
willingness to wait for a suitable cooperation partner rather
than going for the central repository, improves the effective-
ness of the exchange system, making it possible to trade cost
for latency if so desired.

The system is shown to work both under assumptions of
empty and random initial state, though starting out with
large variances in cache contents clearly reduces the effec-
tiveness of the algorithm.

11. FUTURE RESEARCH
Though promising even in its current state, several possi-

bilities for extensions and refinements present themselves.
The simplistic model of data objects can easily be gen-

eralized to account for varying data object sizes. This will
result in weights being introduced in (2) that will then prop-
agate naturally into the decision algorithm through the par-
tial derivatives.

In the scenarios presented in this paper, the service a client
can provide a cooperation parter is limited to file distribu-
tion but it would be possible to trade heterogeneous services,
for example file access for computations or GPS readings,
using energy cost as the base for the economy.

Removing the necessity for a central mechanism is an-
other goal to make the scheme easier to deploy in an ad-hoc
manner. Taking the role of the central node, thereby per-
forming the arbitration and distribution of encryption keys,
is a service that a client could offer its peers. This extension
is an important step in creating more loosely coupled and
self governing systems.

The heuristic algorithm could be modified to explicitly de-
compose the population into groups based on the ratio of Nd
and Nc. This could improve performance and computational
efficiency, as well as allowing for a distributed solver.
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