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Abstract— We study stability properties of monotone dy-
namical flow networks. Demand and supply functions relate
states and flows of the network, and the dynamics at junctions
are subject to fixed turning rates. Our main result consists
in the characterization of a stability region such that: If the
inflow vector in the network lies strictly inside the stability
region and a certain graph theoretical condition is satisfied,
then a globally asymptotically stable equilibrium exists. In
contrast, if the inflow vector lies strictly outside the region,
then every trajectory grows unbounded in time. As a special
case, our framework allows for the stability analysis of the
Cell Transmission Model on networks with arbitrary topologies.
These results extend and unify previous work by Gomes et al.

on stability of the Cell Transmission Model on a line topology
as well as that by the authors on throughput optimality in
monotone dynamical flow networks.

Index Terms— Transportation systems; Monotone systems;
Dynamical flow network; Stability.

I. INTRODUCTION

Transportation systems have been receiving an increasing
degree of attention from the control community due to their
societal and economic impact, and because they are a proto-
type of cyber-physical networks amenable to be treated with
the tools developed during the last decades [1], [2], [3]. Large
part of the literature on macroscopic traffic models is based
on PDEs models [4], [5]. Despite the fact that the latter have
proved valuable to represent real world phenomena, solving
the PDEs is often a very difficult problem to tackle even in
the simplest settings. In this paper, we consider instead dy-
namical flow networks modeled as mass-conservation driven
systems of ODEs on directed graphs. Each node of the graph
represents a junction, while links correspond to physical
links in the network. The ODEs model the dynamics of the
densities, or occupancy levels, of particles flowing through
the network. On each link, the desired outflow and the
maximum inflow are given by the density dependent demand
and supply functions, respectively. Certain links work as on-
ramps and have fixed inflows corresponding to the constant
rate at which particles enter the network from the external
world. Conversely, the outflow from links that act as off-
ramps is equal to their demand, and leaves the network.
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The model extends the celebrated Cell Transmission Model
(CTM) [6], [7] to networks with arbitrary topology. Our
model inherits from the original CTM for networks [7] the
model for flow through merge nodes, but differs in treating
the flow in diverge nodes. Indeed, both models employ fixed

turning rates in freeflow, namely, when at a node the supply
of downstream links is sufficient to accommodate the flow
coming from upstream. However, while [7], [8] consider a
FIFO policy in congestion, namely the total outflow from
a link is bounded by the most congested link downstream,
we assume that each turning is independent. This allows us
to prove that the system is monotone [9], and to offer a
strong characterization of the network equilibria structure:
the space of possible inflow vectors is divided in regions. If
the inflow vector is strictly inside one of these regions and
a certain graph theoretical condition is satisfied, then the
network admits a globally asymptotically stable equilibrium.
When the inflow vector crosses the boundary between two

of such regions, the corresponding globally asymptotically
stable equilibrium jumps to a strictly higher value, namely
the network admits a sequence of phase transitions. When the
inflow vector lies instead strictly outside the last region, all
the trajectories grow unbounded in time. The contributions
of this paper can be summarized as follows: 1) we propose
a monotone model for cyclic, multi-origin multi-destination
dynamical flow networks that exhibits enough structure to
be fully characterized in terms of its stability properties, 2)
we extend and unify existing results [10], [11] that obtained
similar results for the line topology, 3) we extend our
previous analysis of dynamical flow networks [12], [13] to
the demand-and-supply setting. In particular, in [12], [13] the
model for dynamical flow networks is substantially different
since it is based on dynamic routing rather than on fixed
turning rates and demand and supply functions. While it
shares with the model in the present paper the monotonicity
properties, it has stronger stability properties that do not
hold in the present setting. The theoretical results are also
different, as in the present paper we focus on analysing
stability and properties of the equilibria, while in [12],
[13] we prove maximal throughput and we discussed the
resilience of the network to perturbations.

The paper is organized as follows: in the rest of this
section we provide some basic notation. In Section II we
describe the model, we study its monotonicity properties,
and we state the main result. More details on the particular
case of freeflow equilibrium are offered in Section III.
Section IV provides a numerical example that illustrates the
theoretical results. Finally, Section V draws the conclusions
and provides future research directions, and we gather in



Appendix some technical results.

A. Notation

The symbols R and R
+

:= {x 2 R : x � 0} denote the
set of real and nonnegative real numbers, respectively. Let A
and B be finite sets. Then |A| denotes the cardinality of A,
RA (respectively, RA

+

) the space of real-valued (nonnegative-
real-valued) vectors whose components are indexed by ele-
ments of A, and RA⇥B the space of matrices whose real
entries are indexed by pairs in A ⇥ B. The transpose of a
matrix M 2 RA⇥B is denoted by M

0 2 RB⇥A, while 0
and 1 stand for an all-zero and all-one vectors of suitable
dimension, respectively. The natural partial ordering of RA

will be denoted by x � y for two vectors x, y 2 RA such
that x

a

 y

a

for all a 2 A.
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Fig. 1. Graphical illustration of some key notations. In the right,
links comprising @�

U and @+
U are shown by dashed and dotted arrows,

respectively; links comprising E+
U \ @+

U are shown in solid arrows.

A directed multi-graph is a couple G = (V, E), where V
and E stand for the node set and the link set, respectively, and
are both finite. They are endowed with two vectors: �, ⌧ 2
VE . For every e 2 E , �

e

and ⌧

e

stand for the tail and head
nodes respectively of link e. We shall always assume that
there are no self-loops, i.e., ⌧

e

6= �

e

for all e 2 E . On the
other hand, we allow for parallel links. For a node v 2 V ,
let E+

v

:= {e : �

e

= v} and E�
v

:= {e : ⌧

e

= v}. For a link
e 2 E , let E+

e

:= E+

⌧e
be the set of links downstream to e

and E�
e

:= E�
�e

be the set of links upstream to e. For a node
subset U ✓ V , define E+

U := [
u2UE+

u

. Let @+

U := {e 2 E :

�

e

2 U , ⌧
e

/2 U} and @

�
U := {e 2 E : �

e

2 V \ U , ⌧
e

2 U}
be the set of links from U to V \ U and from V \ U to U ,
respectively. See Figure 1 for an illustration of some of these
notations.

Given a graph G = (V, E), a matrix J 2 RV⇥V is a
weighted sublaplacian of G if J

vu

� 0 for any v, u 2 V ,
v 6= u, and

P
u

J

uv

 0 for all v 2 V .

II. MONOTONE DYNAMICAL FLOW NETWORKS

We study a transportation network modeled as a directed
graph G = (V, E) in which the set of nodes V represents
junctions or the external world w, and the set of links
represents physical links. A link e such that �

e

= w is called
a on-ramp. The set of on-ramps is denoted by R ✓ E .

Link e’s occupancy level, or density, is denoted by the
symbol ⇢

e

2 [0, B

e

], where B

e

is the maximum particles
density allowed on the link. On on-ramps, we assume B

e

=

+1. Denote by R =

Q
e2E [0, Be

] the set of allowed

occupancy levels in the network. The densities are subject to
the following mass-conservation driver dynamics

⇢̇

e

= f

in

e

(⇢)� f

out

e

(⇢) (1)

where f

in

e

(⇢) and f

out

e

(⇢) denote the density dependent
instantaneous inflow and the outflow on link e, defined below.
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Fig. 2. Graphical illustration of demand and supply on a link i 2 E \ R.

Each link has a demand function d

e

that represents the
ideal amount of flow on link e as a function of the density
on e. We assume that d

e

(⇢

e

) is a continuous differentiable

function with
@d

e

(⇢

e

)

@⇢

e

> 0, d
e

(0) = 0 and lim

x!1 d

e

(x) =

F

e

> 0, F
e

being the ideal capacity, or maximum flow, of the
link. Each non on-ramp link is also endowed with a supply
function s

e

that tells the maximum flow allowed into link e.
We assume that s

e

(⇢

e

) is a continuous differentiable function

such that
@s

e

(⇢

e

)

@⇢

e

< 0, s
e

(0) > 0, and s

e

(B

e

) = 0, for all

e 2 E \ R. Finally, for every link e 2 E we denote by the
symbol C

e

its capacity. For e 2 R, we set C
e

= F

e

. For e 2
E \R, by the monotonicity properties of demand and supply
there exist a unique ⇢̂

e

2 [0, B

e

] such that d
e

(⇢̂

e

) = s

e

(⇢̂

e

),
namely, such that demand and supply are balanced. We then
set C

e

= d

e

(⇢̂

e

). We call this value capacity since it is the
maximum flow on a link at equilibrium, as will be proven
later. A graphical example of supply and demand functions
for a link e 2 E \ R is illustrated in Figure 2.

For each diverge node v 2 V , we assume that drivers
have a set of fixed turning preferences {R

ej

}
j2E+

v
such that

R

ej

� 0 for all j 2 E+

v

and
P

j2E+
v
R

ej

= 1. These values
tell how the flow from link e splits into the subsequent links.

Finally, we assume that there exists a nonempty set Ro ✓
E of destination links, or off-ramps, such that ⌧

e

= w. If a
particle leaves one of such links, it leaves the network.

The following minimal connectivity assumption ensures
that particles are allowed to leave the network.

Assumption 1: For every link e 2 E , there exists at least
one directed path from e to a link j 2 Ro.
Notice that, in particular, Assumption 1 implies that for any
nonempty network there exists at least one off-ramp.

We consider the following routing policy:

f

j!e

(⇢) = R

je

d

j

(⇢

j

)min

(
1,

s

e

(⇢

e

)P
k2E�

�e
R

ke

d

k

(⇢

k

)

)

which can be interpreted as follows: If
P

k2E�
�e

R

ke

d

k

(⇢

k

) 
s

e

(⇢

e

), i.e., if the supply on e is sufficient to accommodate
the whole ideal flow into e, then flow from j to e is equal to



its ideal value R

je

d

j

(⇢

j

). If instead
P

k2E�
�e

R

ke

d

k

(⇢

k

) >

s

e

(⇢

e

), then the actual flow from j to e is a fraction of s
e

(⇢

e

)

proportional to the ideal flow R

je

d

j

(⇢

j

).
We let finally

f

in

e

=

(P
j2E�

e
f

j!e

, e 2 E \ R
�

e

, e 2 R

f

out

e

=

(P
j2E+

e
f

e!j

, e /2 Ro

d

e

(⇢

e

), e 2 Ro

.

We call the system (1) with the routing policies defined
above a dynamical flow network with fixed preference rates.
To make clear the dependence of the system on the inflow
vector � 2 RR

+

, we write ⇢̇ = �(⇢,�) = f

in

(⇢) � f

out

(⇢)

and we denote by �

t

(⇢

�
,�) the solution to ⇢̇ = �(⇢,�) with

initial condition ⇢(0) = ⇢

�.
Remark 1: The function �(⇢,�) is Lipschitz in ⇢ due to

the properties of demand and supply and is smooth in �.
Remark 2: The set R =

Q
e2E [0, Be

] is positively invari-
ant for the system, since for ⇢

e

= 0 one has f

out

e

(⇢) 
d

e

(⇢

e

) = 0, while ⇢

e

= B

e

implies f

in

e

(⇢)  s

e

(⇢

e

) = 0.
From now on, we consider thus only trajectories that entirely
belong to R.

Remark 3: In [10], [11] the authors consider the CTM on
a directed line and assume that if a link, namely, a cell in the
line, possesses an off-ramp, then the flow towards the off-
ramp is a fraction of the total outflow from the link. As such,
if the cell immediately downstream is completely congested,
then the flow on the ramp is also stopped. In this paper we
assume instead that off-ramps are subject to the balance of
supply and demand. Consequently, the outflow from a link
can be nonzero even if some of the subsequent links are
congested. This is consistent with the idea that drivers whose
destination can be reached from the off-ramp will leave the
network even if downstream links are congested.

Remark 4: Our model employs a proportional rule for
merge that correspond to that proposed in [7], [8]. As it is
straightforward to see, it corresponds to set, for all j 2 E�

e

,
f

j!e

(⇢) = ↵(⇢)d

j

(⇢

j

) where ↵(⇢) 2 [0, 1] is the maximum
value for which

P
j2E�

v
f

j!e

(⇢)  s

e

(⇢

e

).
Concerning diverge, previous models employ the follow-

ing FIFO rule

f

e!j

= ↵(⇢)R

ej

d

e

(⇢

e

)

where ↵(⇢) 2 [0, 1] is the maximum value such that f
e!j

=

min {↵(⇢)R
ej

d

e

(⇢

e

), s

j

(⇢

j

)} for all j 2 E+

v

. As explicitly
pointed out in [7], this corresponds to assume that if vehicles
that want to turn into j are blocked by the scarce supply in
j, then the whole flow out from e (and hence, also vehicles
that want to turn into k 6= j) is slowed down. In the present
paper we simply assume that turnings are independent one
each other. Notice that this implies that part of the vehicles
that would like to turn into j stay in e, increasing the demand
and thus also the flow towards k 6= j. This is consistent with
the idea that vehicles stopped in a jam might choose different
paths instead of blindly follow their preference.

The rest of this section is devoted to establish some
important properties of the proposed model. First of all, we
show that the maximum flow on an edge at equilibrium is
given by its capacity, hence the name.

Lemma 1: Consider the dynamical flow network with
fixed preference rates (1) and let ⇢

⇤ be an equilibrium for
the system. Then f

e

(⇢

⇤
) = f

in

e

(⇢

⇤
) = f

out

e

(⇢

⇤
)  C

e

for
any e 2 E \ R.

We study now the monotonicity of the system. A system
of the type

⇢̇ = �(⇢)

is said to be a monotone, or cooperative, system [9] if ⇢(0) �
⇢̃(0) implies �

t

(⇢(0)) � �

t

(⇢̃(0)) for any t � 0, where
x � y means x

i

 y

i

for all i and �

t

(⇢

�
) is the solution

to ⇢̇ = �(⇢) with initial condition ⇢(0) = ⇢

�. By Kamke’s
theorem [9, Theorem 1.2], [14], monotonicity is equivalent
to the property that for almost all ⇢,

@�

e

(⇢)

@⇢

k

� 0, 8e 6= k .

The following lemma establishes that the system under
consideration is indeed monotone.

Lemma 2: The dynamical flow network with fixed pref-
erence rates (1) is a monotone system for every � 2 RR

+

.

Monotonicity gives the system a high degree of structure
that can be used to study its stability properties. In particular,
let us call nominal trajectory the evolution of the state with
initial condition ⇢(0) = 0. As an immediate consequence
of the monotonicity properties of the system, we obtain
�

t

e

(0,�) ⌫ �

s

e

(0,�) for all 0  s  t and for all e 2 E .
Consequently, lim

t!1 �

t

e

(0,�) exists for every �, and we
can adopt the notation ⇢

⇤
(�) := lim

t!1 �

t

e

(0,�). The
following lemma shows that such a limit is always strictly
smaller than the maximum allowed density on any non on-
ramp link.

Lemma 3: Consider the dynamical flow network with
fixed preference rates (1). Then ⇢

⇤
e

(�) < B

e

for all e 2 E\R.
Monotonicity also allows us to prove the following lemma,

which gathers several useful properties of the system under
analysis that will be used in the rest of the paper. The result
can be proved employing an `

1

contraction principle for
monotone system with mass conservation that was proved
in [13] and is stated for completeness in Appendix.

Lemma 4: Consider the dynamical flow network with
fixed preference rates (1). Then

i) if ⇢

⇤
e

(�) < +1 for all e 2 R, then it holds true
lim sup

t!1 ||�t

(⇢

�
,�)|| < +1 for any initial condi-

tion ⇢

� 2 R. If there exists e 2 R such that ⇢⇤
e

= +1,
then lim

t!1 �

t

e

(⇢

�
,�) = +1 for any initial condition

⇢

� 2 R.
ii) ⇢

⇤
(�) is a monotone function of the inflow vector

� � ˜

� =) ⇢

⇤
(�) � ⇢

⇤
(

˜

�) .

iii) Assume that ⇢̃ is a globally asymptotically stable equi-
librium for (1) with inflow vector ˜

� ⌫ �. Then ⇢̃ ⌫
⇢

⇤
(�).



Point i) of Lemma 4 states a dichotomy: Either the system
is bounded for any initial condition, and the trajectory start-
ing from zero initial condition converges to an equilibrium.
Or the occupancy levels grow unbounded, for any initial
condition. Consequently, the set

⇤ := {� 2 RR
+

: max

e2E
⇢

⇤
e

(�) < +1} ,

is the largest set of inflow vectors for which the system (1) is
stable. The rest of the paper aims at characterizing ⇤. A first
property is is straightforward from point ii) of Lemma 4,
which implies that as � decreases in each component, the
corresponding limit point of the nominal trajectory cannot
increase. Therefore, ⇤ is a connected set that includes 0.

To state our main result, we first define B ⇢ ⇤ to be the
set of � for which there exists k 2 E \ R such that

X

j2E�
�k

R

jk

d

j

(⇢

⇤
j

(�)) = s

k

(⇢

⇤
k

(�)) .

For every � 62 B, we define the dual graph Gd associated
with ⇢

⇤
(�) as follows: Let

J

�

= r�(⇢)|
⇢=⇢

⇤
(�)

.

Then the dual graph Gd

= (Vd

, Ed

) has set of nodes Vd

= E ,
and has an edge (e, j) 2 Ed if [J

�

]je > 0.
Finally, we shall say that the dual graph Gd is rooted if

for every e 2 Vd there a directed path from e to an offramp
j 2 Ro ✓ Vd.

The following theorem is the main result of this paper. To
prove it, one uses Lemma 7 and the fact that Gd is rooted
to show that the system linearized around the equilibrium is
stable, and then proves that stability is global by Lemma 6.

Theorem 1: Consider the dynamical flow network with
fixed preference rates (1) with inflow vector � 2 ⇤ \ B.
Assume that in the dual graph Gd is rooted. Then ⇢

⇤
(�) =

lim

t!1 �

t

(0,�) is a globally asymptotically stable equilib-
rium.

As illustrated in Figure 3, the set ⇤ is a connected set that
includes 0, and is divided into regions by the surfaces de-
scribed by B. Whenever the inflow vector lies strictly inside
one of the regions that do not compose B (in shades of grey
in Figure 3), the system admits a globally asymptotically
stable equilibrium if the dual graph is rooted, and whenever
the inflow vector lies strictly outside ⇤, the system is unstable
for any initial condition. Finally, the trajectory of ⇢⇤(�) is not
continuous in �, but rather exhibits phase transitions when
the inflow vector crosses one of the surfaces defined by B.

Remark 5: The main theorem shows that when � 62 B
and the corresponding limit point ⇢

⇤
(�) is an equilibrium,

then it is unique and globally asymptotically stable. We also
know that ⇢⇤(�) is a monotone function of � itself by point
(ii) of Lemma 4. This set of equilibria can exhibit phase
transitions in �. Indeed, consider two regions ⇤

1

and ⇤

2

that are separated by a surface in B. Let {�k

1

}
k2N ✓ ⇤

1

and {�k

2

}
k2N ✓ ⇤

2

be two sequences of elements of ⇤

1

and ⇤

2

that converge to the same value ˜

� 2 B, i.e.,

�2

�1

˜

⇤

⇤FF

⇤

Fig. 3. Graphical illustration of the partition of the set ⇤ for a network
with two on-ramps and � = (�1,�2). The smallest region ⇤FF for which
the equilibrium admits a globally asymptotically stable equilibrium is called
⇤FF and is studied in Section III. Other stability regions are given in shades
of grey. If � lies strictly inside any of them and the corresponding dual graph
is rooted, the system admits a globally asymptotically stable equilibrium.
The black region ⇤̃ is an upper bound on ⇤. If � lies strictly outside ⇤̃,
then any trajectory grows unbounded, as shown in Remark 6.

lim

k!1 �

k

1

= lim

k!1 �

k

2

=

˜

�. Then it is possible that
lim

k!1 ⇢

⇤
(�

k

1

) = ⇢

⇤
1

� ⇢

⇤
2

= lim

k!1 ⇢

⇤
(�

k

2

), namely, the
system exhibits a phase transition from ⇢

⇤
1

to ⇢

⇤
2

. Therefore,
on a path of inflow vectors that starts from � = 0 and
increases in every component, the system exhibits a sequence
of globally asymptotically stable equilibria that is continuous
except for a series of jumps, until it becomes a point at
infinity for � large enough.

Remark 6: For generic networks it is difficult to charac-
terize the set ⇤ in an explicit way, because its boundaries
depend on the shape of demands and supplies in the links of
the network. A simple upper bound is given by the max-flow
min-cut theorem. To this aim, call a subset U ✓ V a cut, and
define �U =

P
r2R:�r2U �

r

where the sum is on the ramps
that stem from nodes in U . Define the polytope ˜

⇤ := {� 2
RR

+

: �U 
P

e2@

+
U
C

e

, 8U} - shown in black in Figure 3.
Then a sufficient condition for instability of the system is
� 62 ˜

⇤. Indeed, if by contradiction �

¯U >

P
e2@

�
Ū
C

e

on a cut
¯U and ⇢

⇤
(�) were an equilibrium, then

�

¯U +

X

e2@

�
Ū

f

out

e

(⇢

⇤
e

) =

X

e2@

+
Ū

f

out

e

(⇢

⇤
) ) �

¯U 
X

e2@

�
Ū

C

e

.

where we used Lemma 1. This bound is in general not tight,
as shown for example in Section IV. However, it also shows
that for dynamical networks with supply and demand the
classical static theory is insufficient to explain the complex
interplay between the flows in the network.

A precise characterization of the equilibrium can be more-
over offered for the freeflow region ⇤

FF

, which is the region
that contains the origin, as shown in the next section.

III. STABILITY IN THE FREEFLOW REGION

The fixed turning rates {R
ej

}, and the inflows �

e

imply
the existence of a unique equilibrium flow f

⇤ that is the
solution of the system of linear equations

R

T

f

⇤
+ �

a

= 0 (2)



where

[R]

ej

=

8
><

>:

R

ej

, if ⌧
e

= �

j

�1, if e = j

0, otherwise

and �

a 2 RE
+

is such that �a

e

= �

e

if e 2 R, and �

a

e

= 0

otherwise.
The matrix R is Metzler and under Assumption 1 it is

invertible [2], so (2) has indeed a unique solution f

⇤
=

�R

�T

�

a. To this equilibrium flow we can associate a
candidate equilibrium ⇢

⇤ such that ⇢⇤
e

= d

�1

e

(f

⇤
e

) under the
very mild assumption f

⇤
e

< F

e

for all e 2 E . We can now
define the polytope, or freeflow region,

⇤

FF

= {� 2 ⇤ : f

⇤
e

< C

e

, 8e 2 E , f⇤
= �R

�T

�

a} ,

which is the set of vector inflows whose associated equilib-
rium flows f

⇤, solutions of (2), are component-wise strictly
smaller than the capacities. The next proposition states that
for this set of vector inflows the system admits a globally
asymptotically stable equilibrium. As such, ⇢

⇤ is also the
limit of the nominal trajectory. The next proposition is a
particular case of Theorem 1, as it can be shown that the
dual graph associated with � 2 ⇤

FF

is always rooted.
Proposition 1: Consider the dynamical flow network with

fixed preference rates (1), let � 2 ⇤

FF

, and set ⇢

⇤
e

=

d

�1

e

(f

⇤
e

) for all e 2 E . Then ⇢

⇤ is a globally asymptotically
stable equilibrium.

Remark 7: When the network consists in a direct chain of
links with one origin and one destination, the result recovers
contributions already appeared in [10], [11]. However, not
only our result is concerned with global stability of a generic,
possibly multi-origin multi-destination and cyclic network.
More importantly, in [10], [11] the freeflow equilibrium is the
unique possible globally asymptotically stable equilibrium.
In a network, instead, more complex behaviors arise.

IV. A NUMERICAL EXAMPLE

We consider the cyclic network with N = 10 links, two
on-ramps and two off-ramps illustrated in Figure 4. We
consider on all links e 2 E demand and supply functions
given by d

e

(⇢

e

) = min{F
e

, ⇢

e

}, where F

e

is a large value
and s

e

(⇢

e

) = max{2C
e

� ⇢

e

, 0}. With this choice C

e

is
indeed the capacity on each link. We set C

e

= 2 for e 6= 6, 9,
and C

6

= C

9

= 0.5. We set �
1

= 0.5 and we let �
2

vary. We
also set R

34

= R

38

= 0.5, and R

45

= .75 and R

4 10

= .25.
As illustrated in Figure 5, for �

2

2 [0, 1/8)[ (1/8, 1/6)[
(1/6, (4/5) the vector (�

1

,�

2

) = (0.5,�

2

) is not in B and
the system admits a unique globally asymptotically stable
equilibrium, that in particular is a freeflow equilibrium for
�

2

2 [0, 1/8). Instead, the values (0.5,�

2

) for �

2

= 1/8

and �

2

= 1/6 lie on two surfaces defined by B. When they
are crossed the equilibrium exhibits jumps in the component
⇢

⇤
8

(�) and ⇢

⇤
5

(�) of the equilibria, for �

2

= 1/8 and �

2

=

1/6, respectively. More interestingly, when �

2

= 1/8, ⇢⇤
e

(�)

is uniquely determined for e 6= 8, but there is a whole
segment in which ⇢

⇤
8

(�) can take values (represented in
thick black in Figure 5). In other terms, equilibria manifold

�2

�1

2

1 3

7

6 5

4

9

10

8

Fig. 4. The network used in the simulations.
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Fig. 5. The equilibria for the simulated system for �2 2 [0, 0.775] and
�1 = 0.5. In thick line, for �2 = 1/8 and �2 = 1/6, the equilibria interval
that appear on links 8 and 5, respectively. For any other �2, the equilibrium
in the system is unique and globally asymptotically stable. As �2 ! 0.8,
the component ⇢⇤2(�) increases and when �2 = 0.8 (not shown) the system
becomes unstable.

appear, similarly to what is shown in [10]. Analogously, for
�

2

= 1/6 the component ⇢⇤
5

(�) of the equilibrium is allowed
to take values in a segment. Finally, when �

2

= 0.8 any
trajectory grows unbounded in the second component. It can
be noticed that this corresponds to an equilibrium condition
that would require link 5 to get completely congested and
have zero supply s

5

= 0. Obviously, the trajectory also grows
unbounded for any �

2

> 0.8. This situation is illustrated in
Figure 5.

V. CONCLUSIONS

This paper studies a macroscopic traffic model based on
dynamical flow networks driven by mass-conservation laws.
We extend the Cell Transmission Model to the network
setting in such a way that the system is monotone. This
allows us to characterize the stability properties and the
structure of the equilibria of the system as a function of
the inflow vectors in the network. Future research directions
include the generalization of these results beyond the demand
and supply setting and distributed optimal control for traffic
networks.

APPENDIX

The next result is a simple adaptation of the `

1

contrac-
tion principle for monotone dynamical systems with mass
conservation that is proven in [13].



Lemma 5: Let � : Rm

+

! Rm be a Lipschitz map such
that

@

@x

j

�

i

(x) � 0 , 8 i 6= j 2 {1, . . . ,m} (3)

and that
X

1im

@

@x

j

�

i

(x)  0 , 8 j 2 {1, . . . ,m} (4)

for every x 2 Rm

+

. Then
X

1in

sgn (x

i

� y

i

) (�

i

(x)� �

i

(y))  0, 8x, y 2 Rm

+

.

(5)
The previous lemma has the following result as a corollary.
Lemma 6: Let ẋ = f(x) be a monotone system for which

(4) holds true, and let x⇤ be an equilibrium for the system.
Then x

⇤ is locally asymptotically stable if and only if it is
globally asymptotically stable.

Proof: Sufficiency is obvious. For necessity, assume
x

⇤ is locally asymptotically stable. Then there exists a KL
function �(·, ·) such that ||�t

(x) � x

⇤||  �(x � x

⇤
, t) for

all x 2 B
"

(x

⇤
), a sufficiently small closed ball around the

equilibrium in the `

1

topology [15, Lemma 4.5], and so if
x

� 2 B
"

(x

⇤
) then �

t

(x) ! x

⇤. Therefore, to prove global
stability we need to show that for any x

�
/2 B

"

(x

⇤
), i.e.,

||x� � x

⇤||
1

> ", there exists a finite time T � 0 such that
�

T

(x

�
) 2 B

"

(x

⇤
). Let x̃ = x

⇤
+

"

||x��x

⇤||
1

(x

� � x

⇤
), for

which it is easily seen that ||x̃�x

⇤||
1

= ", i.e., x̃ 2 B
"

(x

⇤
),

and ||x��x

⇤||
1

= ||x�� x̃||
1

+ ||x̃�x

⇤||
1

= ||x�� x̃||
1

+",
and consider the trajectories of the system starting from x

�

and x̃. By Lemma 5, d

dt

||�t

(x

�
) � �

t

(x̃)||
1

 0, namely
||�t

(x

�
)� �

t

(x̃)||
1

 ||x� � x̃||
1

. By the triangle inequality,

||�t

(x

�
)� x

⇤||
1

 ||�t

(x

�
)� �

t

(x̃)||
1

+ ||�t

(x̃)� x

⇤||
1

= ||x� � x̃||
1

+ ||�t

(x̃)� x

⇤||
1

= ||x� � x

⇤||
1

� "+ ||�t

(x̃)� x

⇤||
1

.

Due to the properties of the KL functions, there exists T "
2
�

0 such that �(x � y, t)  "

2

for all y 2 B
"

(x

⇤
) and for all

t � T

"
2

. Thus, we have

||�t

(x

�
)� x

⇤||
1

 ||x� � x

⇤||
1

� "+ ||�t

(x̃)� x

⇤||
1

 ||x� � x

⇤||
1

� "

2

for all t � T

"
2

. If �

T

"
2
(x

�
) 2 B

"

(x

⇤
), the proof is

complete with T = T

"
2

. Otherwise, the same argument
can be reiterated. Since each step the `

1

distance between
�

t

(x) and x

⇤ decreases by at least "

2

> 0, in no more than
d 2||x��x

⇤||1
"

e steps, i.e., for T  d 2||x��x

⇤||1
"

eT "
2

, it holds
�

T

(x

�
) 2 B

"

(x

⇤
).

Lemma 7: Let G = (V, E) be a graph and J 2 RV⇥V be
a weighted sublaplacian of G. Then all the eigenvalues of
J have negative real part except possibly eigenvalues in 0.
Moreover, if S is the set of v for which

P
u

J

uv

< 0, then
J is stable if for every u there exists a directed path in G
from u to a node v 2 S .

Proof: The first claim is straightforward by Gershgorin
circle theorem. Concerning the second, let ↵ 2 (0, 1)

such that ¯

J = ↵J has all diagonal elements in absolute
value strictly smaller than 1, and construct the matrix P =
¯

J

0 � ¯

J

01
0 1

�
2 R|V|+1⇥|V|+1. Clearly P is a stochastic

matrix and if G
P

is the graph associated with P then it is an
augmented version of G in which all the edges that are edges
of G have reversed direction, and there is an additional node
that is directly connected to all the nodes in S . The graph
theoretical condition in the statement ensures then that G

P

admits a spanning tree rooted at the additional node. Then
by [16] P has a single eigenvalue in 1 and all the other
eigenvalues strictly inside the unit circle. By construction of
P , therefore, all eigenvalues of J have negative real part.
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