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A unifying framework for robust synchronisation of
heterogeneous networks via integral quadratic constraints

Sei Zhen Khong, Enrico Lovisari, and Anders Rantzer

Abstract—A general framework for analysing robust synchronisation
in large-scale heterogenous networks is proposed based on the theory of
integral quadratic constraints (IQCs). Dynamic agents are represented
as linear time-invariant single-input-single-output systems. The agents
exchange information according to a sparse dynamical interconnection
operator in order to achieve synchronisation, where their outputs are
steered to the same, possibly time-varying, signal. The main technical
hindrance to applying IQCs in this context lies with the presence of
the marginally stable dynamics which define the trajectory to which
the agents’ outputs synchronise. It is shown that by working with
conditions defined on modified signal spaces of interest and exploiting
the graph structure underlying the connections between the dynamic
systems, IQC methods can be applied directly to synchronisation analysis
without recourse to loop transformations, which may obscure the inherent
structural properties of the multi-agent networked systems. Decentralised
and scalable conditions for synchronisation are proposed within this
setting. The IQC framework is demonstrated to unify and generalise
some of the existing results in the literature, including certain Nyquist-
type consensus certificates for time-delay systems. Moreover, it allows the
role of feedback in robustness against uncertainty to be better manifested
within the context of synchronisation.

Index Terms—Synchronisation, consensus, heterogeneous multi-agent
networks, integral quadratic constraints, distributed analysis

I. INTRODUCTION

Synchronisation in large-scale interconnected networks is a ubiq-
uitous phenomenon that takes place both in natural and engineered
contexts, such as biological, energy-exchanging networks [1], clock
synchronisation, and power network phase locking [2]. One of the
most studied synchronisation problems is consensus, in which agents
in a large-scale network exchange information in order to collectively
reach an agreement on object of interest over time. Starting from the
seminal work [3], in which the authors prove consensus for fixed
directed topologies, various linear consensus algorithms have been
proposed for single and double integrator multi-agent systems [4],
[5]. They also find applications in a number of more complex tasks
such as formation control, distributed estimation, load balancing,
distributed optimisation, distributed demodulation [6], [7], [8], [9]. In
the last decade there appeared a number of studies on higher order
consensus networks, in which agents are represented as generic linear
time-invariant (LTI) single-input-single-output (SISO) systems. These
include [10], [11], which are concerned with homogeneous networks,
and [12], [13], [14], where the heterogeneous case is considered.

In this paper, we examine heterogeneous networks of stable LTI
SISO dynamic agents for which the objective is to synchronise the
system outputs according to a persistent signal trajectory defined by
poles on the imaginary axis. This setting encompasses consensus
as a special case, where the synchronised trajectory is towards a
constant value characterised by a simple pole at the origin. The agents
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are interconnected through a possibly dynamical LTI interconnection
operator corresponding to an underlying communication graph. We
propose a unifying framework within which to analyse synchronisa-
tion using a well-known robustness analysis tool known as integral
quadratic constraints (IQCs) [15]. Within the literature addressing the
problem of synchronisation, works that employ similar techniques
are [16], which exploits passivity (itself a particular type of IQC) to
achieve synchronisation in constrained sets, and [17], which proposes
criteria based on the incremental IQC notion of co-coerciveness for
the study of synchronisation in biological networks.

The theory of integral quadratic constraints (IQCs) introduces
a computationally attractive approach to encapsulating structural
uncertainties of open-loop systems. It presents itself as a useful tool
in closed-loop stability/performance analysis. The IQC stability con-
ditions in [15] are applicable only to open-loop stable components,
i.e. possessing no singularities in the closed right-half complex plane.
The marginally stable dynamics corresponding to the imaginary-axis
poles are therefore an impediment to the use of IQC analysis on
synchronisation problems. One workaround is to employ loop trans-
formations to the systems so as to yield a feedback interconnection
whose stability implies synchronisation of the original setup [13],
[14] — a related idea is exploited in [18] to study the stability of
systems with rate limiters. Specifically, the work [14] considers the
problem of synchronisation of heterogeneous linear time-invariant
(LTI) systems perturbed by nonlinear uncertainties. The work [13]
proposes a scalable consensus certificate for heterogeneous LTI
systems interconnected on a possibly time-varying graph. In the
case where the network interconnection matrix is normal, a certain
factorisation can be exploited to transform the systems to a form to
which IQC analysis is applicable to conclude higher-order consensus
(multiple poles at the origin) [19].

A main theme of this paper is to establish that the theory of
integral quadratic constraints (IQCs) [15] can be applied directly to
the study of synchronisation of LTI systems without appealing to
loop transformations to accommodate the marginally stable dynamics
in the open-loop agents, or relying on specific structures of the
interconnection matrices as in [19]. This input-output approach serves
as an alternative to the results in the literature, which are chiefly based
on the generalised Nyquist criterion. The idea involves modifying
the definition of the standard frequency-domain L2 signal space
with an indented integration contour that avoids the poles on the
imaginary-axis and apply IQC theory to the open-loop systems, which
are input-output stable when defined on the new space. The proof
method differs from [15] in that graph-topological results of [20] are
used to establish closed-loop well-posedness for LTI systems, thereby
simplifying the IQC conditions for synchronisation. It is noted here
that the proofs in this paper are based on frequency-domain methods,
and hence do not naturally extend to nonlinear and time-varying
systems. Nevertheless, it is hoped that the presented results open
the door to future generalisations to accommodate nonlinearities.

To demonstrate the generality and utility of the proposed IQC
framework, distributed synchronisation certificates for heterogenous
networks that generalise a result in [13] are proposed using ideas from
the recent work [21]. These certificates are scalable with respect to
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the size of the network in the sense that the addition or removal of
any agent affects only local conditions and a centralised analysis is
not required to establish network synchronisation. The possibility to
exploit the structure of the system, offered by the IQC analysis carried
out in this paper, has already appeared in the literature in the context
of stabilisation of network systems. In particular, [22], [23] investigate
the notion of David-Wieland shell, a higher dimension generalisation
of the concept of numerical range, and propose distributed stability
certificates based on graph separation (a notion also employed in
IQCs results) of the David-Wieland shells of the agents and of the
interconnection operator. Similar concepts are exploited in [24], [25]
in which the network is considered as bipartite (on one side, the
agents, on the other, the interconnection matrix) and such a structure
is employed to derive scalable stability results. Finally, we show
that the IQC framework incorporates certain Nyquist contour type
consensus criteria for multi-agent networks with different types of
communication delays. Synchronisation under delays is a problem
of great importance in the field of distributed control, and has
already been addressed in specific scenarios for consensus [26] and
synchronisation of Euler-Lagrange systems [27].

The paper is organised as follows. Notation is defined in the
following section. Some preliminaries on linear analysis and graph
theoretic concepts are also provided therein. In Section III the
problem of synchronisation is formulated. The main IQC framework
for analysing synchronisation is introduced in Section IV. Section V
establishes the abovementioned distributed synchronisation certifi-
cates. In Section VI, the IQC conditions developed in Section IV
are shown to specialise to certain Nyquist type criteria for consensus
for networks with time-delay communication commonly employed in
the literature. Some illustrative examples on synchronisation analysis
via IQCs are given in Section VII. Finally, concluding remarks are
provided in Section VIII.

II. NOTATION AND PRELIMINARIES

A. Matrices

Let R and C denote the real and complex numbers respectively.
jR denotes the imaginary axis, C+ (resp. C̄+) the open (resp. closed)
right half complex plane, and | · | the Euclidean norm. Given an A ∈
Cm×n (resp. Rm×n), A∗ ∈ Cn×m (resp. AT ∈ Rn×m) denotes its
complex conjugate transpose (resp. transpose). Aij denotes the (i, j)
entry of A. The ith row and jth column of A are denoted respectively
by Ai• and A•j . Given a vector v ∈ Cn, diag(v) ∈ Cn×n denotes
the diagonal matrix whose diagonal entires are v1, . . . , vn. Let ⊗
denote the Kronecker product and ⊕ the direct sum of matrices.
Define

⊕n
i=1 Ai := A1 ⊕ A2 ⊕ . . . ⊕ An. In denotes the identity

matrix of dimensions n× n.

B. Function spaces

Define the Lebesgue space

L∞ :=
{
φ : jR→ C

∣∣‖φ‖∞ := supω∈R |φ(jω)| <∞
}

and the Hardy space

H∞ :=

{
φ ∈ L∞

∣∣∣∣ φ has analytic continuation into C+

with sups∈C+
|φ(s)| = ‖φ‖∞ <∞

}
.

Let C be the class of functions continuous on jR∪ {∞}, and S :=
H∞∩C. Note that C ⊂ L∞. An H ∈ Cn×n is said to be Hermitian
if H(jω) = H(jω)∗ for all ω ∈ R∪ {∞} and positive semidefinite
if in addition, H(jω) ≥ 0 and positive definite if H(jω) ≥ γIn for
some γ > 0.

Given an ε > 0 and a point jq ∈ jR, define the semi-circle of
radius ε in the right-half plane as

Sε(jq) := {s ∈ C : |s− jq| = ε,<(s) > 0}

and S0(jq) := ∅. Given a finite ordered set jQ =
{jq1, jq2, . . . , jqK} ⊂ jR with q1 > q2 > . . . > qK , define a
contour parameterised by ε ≥ 0 as

Cε(jQ) := j[q1 + ε,∞) ∪ Sε(jq1) ∪ j[q2 + ε, q1 − ε]
∪ Sε(jq2) ∪ j[q3 + ε, q2 − ε]

...

∪ Sε(jqK) ∪ j(−∞, qK − ε].

that is, a straight line on the imaginary axis indented to the right of
every point in jQ by a semi-circle of radius ε. In particular, notice
that C0(jQ) = jR for any jQ ⊂ jR. Denote by C+

ε (jQ) the open
half plane that lies to the right of Cε(jQ), i.e.

C+
ε (jQ) := {s = σ + jω ∈ C | σ̄ + jω ∈ Cε(jQ) =⇒ σ > σ̄},

and C̄+
ε (jQ) its closure. Let Cε(jQ) be the class of functions

continuous on Cε(jQ) ∪ {∞}. Given X ∈ Cε(jQ)n×m, define
‖X‖Cε(jQ) := sups∈Cε(jQ) σ̄(X(s)), where σ̄(·) denotes the max-
imum singular value. An H ∈ Cε(jQ)n×n is said to be Hermitian
if H(s) = H(s)∗ for all s ∈ Cε(jQ) ∪ {∞}. Let Sε(jQ) be
the subclass of Cε(jQ) containing functions that have analytic
continuation into C+

ε (jQ). Note that S ⊂ Sε(jQ) for all ε ≥ 0.

Let the Lebesgue space Ln2 denote the class of functions f :
[0,∞) → Rn with finite energy, i.e. square-integrable, satisfying
‖f‖22 :=

∫∞
0
|f(t)|2 dt <∞. The Fourier transform of f ∈ Ln2 is de-

noted f̂(jω) :=
∫∞

0
e−jωtf(t) dt. Note that ‖f̂‖2 = ‖f‖2 and f̂ has

analytic continuation into C+ and supσ>0 ‖f̂(σ+·)‖2 = ‖f̂‖2 <∞.
The set of Fourier transforms of functions in Ln2 is denoted Hn

2 . A
linear operator mapping between Banach spaces X : X → Y is said
to be bounded if the induced norm

‖X‖X→Y := sup
f∈X :‖f‖X =1

‖Xf‖Y <∞.

Note that multiplication by a transfer function in S as an operator
on H2 defines a corresponding causal and bounded LTI operator on
L2 in the time domain via the Laplace transform isomorphism [28].

For ε ≥ 0 and finite subset jQ ⊂ jR, define Hn
2ε(jQ) to be the

set of functions f̂ : C̄ε(jQ)→ Cn that are analytic on C+
ε (jQ) and

square-integrable on Cε(jQ), i.e. ‖f̂‖2Cε(jQ) :=
∫
Cε(jQ)

|f̂(s)|2 ds <
∞. For notational simplicity, the spatial dimension n and the set of
imaginary-axis poles (jQ) are often dropped from Hn

2ε(jQ). Note
that Hn

2 = Hn
2ε(jQ) when ε = 0. Moreover, for all ε ≥ 0, multipli-

cation by a transfer function X ∈ Sε(jQ) defines a bounded operator
on H2ε with its induced norm equals to ‖X‖Cε(jQ). H2ε is a Hilbert
space with inner product 〈u, v〉Cε(jQ) :=

∫
Cε(jQ)

u(s)∗v(s) ds. It can
be seen that multiplication by an X ∈ S is bounded on H2ε for all
ε ≥ 0. One the other hand, given a q ∈ R, multiplication by 1

s−jq is
bounded on H2ε({jq}) for all ε > 0 but not on H2. In the following,
we will not notationally distinguish between a transfer function and
its associated multiplication operator. For instance, an X ∈ S defines
a bounded operator X : H2ε → H2ε for all ε ≥ 0.

Given an ε ≥ 0 and X ∈ Cε(jQ)n×m, define the graph of the
operator X : Hm

2ε(jQ)→ Hn
2ε(jQ) to be

Gε (X) :=

[
Im
X

]
Hm

2ε(jQ) =

{[
u
y

]
∈ Hn+m

2ε (jQ) : y = Xu

}
.
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Similarly, define the (inverse) graph

G ′ε (X) :=

[
X
Im

]
Hm

2ε(jQ) =

{[
u
y

]
∈ Hn+m

2ε (jQ) : u = Xy

}
.

C. Graph theory

A graph is denoted by G = (V,E), where V = {v1, . . . , vn}
is the set of nodes and E ⊂ V × V , E = {e1, . . . , em} is the
set of edges such that ek = {vi, vj} ∈ E if node vj can receive
information from node vj . For the edge {vi, vj}, vi is called the
parent node and vj the child node. A graph is undirected if {vi, vj} ∈
E then {vj , vi} ∈ E. A path on G of length N is an ordered set of
distinct vertices {v0, v1, . . . , vN} such that {vi, vi+1} ∈ E for all
i ∈ {0, 1, . . . , N − 1}. An undirected graph is said to be connected
if any two nodes in V are connected by a path. The adjacency matrix
A = [Aij ] ∈ Rn×n is defined by Aij = 1 if {vj , vi} ∈ E and Aij =
0 otherwise. Note that A is symmetric for an undirected graph. A
directed tree is a directed graph in which every node has exactly one
parent except for one node, called the root, which has no parent and
which has a directed path to every other node. A subgraph (Vs, Es)
of (V,E) is a graph such that Vs ⊂ V and Es ⊂ E ∩ (Vs × Vs). A
(rooted) directed spanning tree (Vs, Es) of the directed graph (V,E)
is a subgraph such that (Vs, Es) is a directed tree and Vs = Vp.

In an undirected graph, let the neighbours of node vi ∈ V be
defined as Ni := {vj ∈ V : {vi, vj} ∈ E} and denote its degree
by |Ni|. The graph Laplacian is defined as L := diag(|Ni|) − A.
L has a zero eigenvalue corresponding to the vector of ones 1n ∈
Rn. The multiplicity of the zero eigenvalue is one if the graph is
connected [29]. The Laplacian matrix can be factorised as L = DDT ,
where D = [Dik] ∈ Rn×m is the oriented incidence matrix. It is
defined by associating an orientation to every edge of the graph: for
each ek = {vi, vj} = {vj , vi}, one of vi, vj is defined to be the
head and the other tail of the edge:

Dik :=


+1 if vi is the head of ek
−1 if vi is the tail of ek
0 otherwise.

Note that the Laplacian matrix is invariant to the choice of orientation.
Define also the unoriented incidence matrix D̄ ∈ Rn×m whose
entries are the absolute value of those of D.

III. SYNCHRONISATION PROBLEM FORMULATION

P

Γ+

+

f

e

w

v

y
Z · In

Fig. 1. Feedback setup for synchronisation.

Consider the feedback interconnection in Figure 1. There, P :=⊕n
i=1 Pi = diag(Pi) with the SISO dynamical agents Pi ∈ S and

Γ ∈ Sn×n denotes the interconnection matrix. Z is a SISO proper
rational transfer function that has a finite number of poles on jR.
Throughout the paper, jQ = {jq1, jq2, . . . , jqK} is used to denote
the set of poles of Z on the imaginary axis. These poles/modes
describe the trajectory of the output signal y under synchronisation.
The interactions between the agents is determined by an underlying
graph G = (V,E) containing a directed spanning tree, where each

node vi ∈ V is associated with a corresponding Pi and the edges
describe the communication/connections between the agents. Figure 1
models the problem of synchronisation of a network of heterogeneous
agents interconnected through a dynamic matrix. In subsequent parts
of the paper, G is often taken to be a connected undirected graph
when special cases are considered.

The following standing assumption is made throughout the paper.
Assumption 3.1: For every jq ∈ jQ,

lim
s→jq

1

(s− jq)mq−1
Γ(s)1n = 0 and lim

s→jq

1

(s− jq)mq Γ(s) =∞,

where mq denotes the multiplicity of the pole jq of Z. Furthermore,
there exists no x 6∈ span{1n}, such that Γ(jq)x = 0. In other
words, det(Γ(s)) has a zero at every s = jq ∈ jQ of multiplicity
mq corresponding to the null space span{1n}.

For instance, in the case where Z has non-repeated poles on jR,
Γ can be set to L, the graph Laplacian matrix for a connected
undirected graph G. Dynamics can be included via the expression
Γ = D diag(Γi)D

T , where D denotes the incidence matrix and
Γi ∈ S for i = 1, . . . ,m; see Figure 2. This models a heteroge-
neous network configuration of agents interconnected via dynamically
weighted matrices. Note that for both cases Γ satisfies Assumption 3.1
by the connectedness of the graph G.

diag(Pi)

diag(Γi)

y
Z · In

DTD

Fig. 2. A synchronisation setup with dynamical interconnection matrix.

Definition 3.2: The interconnection in Figure 1 is said to reach
synchronisation if

|yi(t)− yj(t)| → 0 as t→∞

for all i, j ∈ {1, 2, . . . , n} and e, f ∈ L2.
In other words, y(t) converges to the subspace spanned by 1n,

i.e. span{1n}. This means the output yi of each of the agent Pi
synchronises to the same trajectory defined by the imaginary-axis
poles of Z.

Remark 3.3: If Z(s) = 1, one recovers the standard setup of
feedback interconnection, whereby synchronisation in the definition
above corresponds to feedback stability. By defining Z(s) := 1

s
,

one recovers the standard consensus problem where all yi’s are to
asymptotically converge to the same constant value. By contrast,
if Z(s) := ω0

s2+ω2
0

and synchronisation takes place, then each
yi will converge to a sinusoid of frequency ω0 and the same
phase/magnitude. Another example is Z(s) := 1

s2
, where the system

outputs synchronise to a ramp function.

IV. INTEGRAL QUADRATIC CONSTRAINT BASED ANALYSIS OF

SYNCHRONISATION

This section introduces a unified framework within which to
analyse the problem of synchronisation using integral quadratic
constraints (IQCs) [15]. To this end, some results from robustness
of closed-loop interconnections are needed and provided next.

A. Feedback robustness

Definition 4.1: Given ε ≥ 0, ∆ : Hn
2ε(jQ) → Hm

2ε(jQ) and
G : Hm

2ε(jQ) → Hn
2ε(jQ), the feedback interconnection of ∆ and
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∆

G+

+

f

e

w

v

Fig. 3. Standard feedback configuration.

G in Figure 3, denoted [∆, G]:{
v = ∆w + f
w = Gv + e

(1)

is said to be H2ε-stable if the map (v, w) 7→ (f, e) has a bounded
inverse on H2n

2ε .

Given an H2ε-stable [∆, G], define the generalised robustness
margin with the ambient space taken to be H2ε(jQ) by

b∆,G := inf
v∈Gε(∆),w∈G ′

ε(G)

‖v + w‖Cε(jQ)

‖v‖Cε(jQ)

. (2)

Furthermore, given two systems ∆1 : Hn
2ε(jQ) → Hm

2ε(jQ) and
∆2 : Hn

2ε(jQ) → Hm
2ε(jQ), define the generalised gap metric as

follows:

δ(∆1,∆2) := ‖ΠGε(∆1) −ΠGε(∆2)‖Cε(jQ)

= max
{
~δ(∆1,∆2), ~δ(∆2,∆1)

}
,

(3)

where the directed gap

~δ(∆k,∆l) := γ
(
Π(Gε(∆l))

⊥ΠGε(∆k)

)
= sup
xk∈Gε(∆k)

inf
xl∈Gε(∆l)

‖xk − xl‖Cε(jQ)

‖xk‖Cε(jQ)

.
(4)

See [20] for the original definitions of the robustness margin and gap
metric with respect to the ambient space H2.

Proposition 4.2: Suppose [∆1, G] is H2ε-stable with b∆1,G >
δ(∆1,∆2), then [∆2, G] is H2ε-stable.

Proof: The claim can be established following the arguments
in [20, Thm. 3] or [30, Prop. III.1], where the result is proven with
respect to the ambient space H2.

The following lemma is used to establish the main IQC result in
the next subsection.

Lemma 4.3: Given ∆ ∈ Sε(jQ)n×m, the mapping

λ ∈ [0, 1] 7→ ∆λ := λ∆ ∈ Sε(jQ)n×m (5)

is continuous with respect to gap metric δ(·, ·).

Proof: Observe that for any λ0, λ1 ∈ [0, 1], (4) gives

~δ(∆λ0 ,∆λ1)

= sup
x1∈Gε(λ1∆)
‖x1‖Cε(jQ) 6=0

inf
x0∈Gε(λ0∆)
‖x0‖Cε(jQ) 6=0

‖x1 − x0‖Cε(jQ)

‖x1‖Cε(jQ)

= sup
[u1
y1 ]∈Gε(∆)

‖[u1
y1 ]‖Cε(jQ)

6=0

inf
[u0
y0 ]∈Gε(∆)

‖[u0
y0 ]‖Cε(jQ)

6=0

∥∥[ u1
λ1y1

]
−
[ u0
λ0y0

]∥∥
Cε(jQ)∥∥[ u1

λ1y1

]∥∥
Cε(jQ)

= sup
[u1
y1 ]∈Gε(∆)

‖[u1
y1 ]‖Cε(jQ)

6=0

inf
[u0
y0 ]∈Gε(∆)

‖[u0
y0 ]‖Cε(jQ)

6=0(
‖λ1y1 − λ0y0‖2Cε(jQ) + ‖u1 − u0‖2Cε(jQ)

‖λ1y1‖2Cε(jQ) + ‖u1‖2Cε(jQ)

) 1
2

≤ sup
[u1
y1 ]∈Gε(∆),‖[u1

y1 ]‖Cε(jQ)
6=0

(
‖λ1y1 − λ0y1‖2Cε(jQ)

‖λ1y1‖2Cε(jQ) + ‖u1‖2Cε(jQ)

) 1
2

≤ sup
[u1
y1 ]∈Gε(∆),‖u1‖Cε(jQ) 6=0

|λ1 − λ0|
‖y1‖Cε(jQ)

‖u1‖Cε(jQ)

= |λ1 − λ0|‖∆‖Cε(jQ),

where the first inequality follows from setting [ y0u0 ] = [ y1u1 ]. Since
this holds for any λ0, λ1 ∈ [0, 1], it follows from (3) that

δ(∆λ0 ,∆λ1) ≤ |λ1 − λ0|‖∆‖Cε(jQ)

for any τ ∈ R, λ0, λ1 ∈ [0, 1]. Continuity of the mapping (5) with
respect to δ(·, ·) thus follows from the inequality above.

B. IQC conditions for synchronisation

Recall that jQ = {jq1, jq2, . . . , jqK} is the finite set of poles on
jR of Z and the shorthand notation ZP is used to denote (Z · In)P
in the synchronisation setup of Figure 1. First, an IQC result on the
generalised H2ε feedback stability is established below.

Theorem 4.4: Given ε > 0, ∆ ∈ Sε(jQ)n×m and G ∈
Sε(jQ)m×n, the feedback interconnection of ∆ : Hn

2ε(jQ) →
Hm

2ε(jQ) and G : Hm
2ε(jQ) → Hn

2ε(jQ) in Figure 3 is H2ε-stable
if there exists a Hermitian Π ∈ Cε(jQ)(n+m)×(n+m) such that the
following complementary IQC conditions hold:

(i) 〈v,Πv〉Cε(jQ) ≥ 0 for all v ∈ Gε (∆);
(ii) there exists a γ > 0 for which 〈w,Πw〉Cε(jQ) ≤ −γ‖w‖2Cε(jQ)

for all w ∈ G ′ε (τG) and τ ∈ [0, 1].
Proof: Mimicking an argument in the proof of [31, Lem. 5.1],

let Ψ := 2Π + γI , the IQC conditions thus become

〈v,Ψv〉Cε(jQ) ≥ γ‖v‖2Cε(jQ) ∀v ∈ Gε (∆)

and

〈w,Ψw〉Cε(jQ) ≤ −γ‖w‖2Cε(jQ) ∀w ∈ G ′ε (τG), τ ∈ [0, 1].

It follows that for any v ∈ Gε (∆), w ∈ G ′ε (τG) and τ ∈ [0, 1],

γ(‖v‖2Cε(jQ) + ‖w‖2Cε(jQ))

≤〈v,Ψv〉Cε(jQ) − 〈w,Ψw〉Cε(jQ)

= 〈v + w,Ψ(v + w)〉Cε(jQ) − 2〈w,Ψ(v + w)〉Cε(jQ)

≤‖Ψ‖Cε(jQ)‖v + w‖2Cε(jQ)

+ 2‖Ψ‖Cε(jQ)‖w‖Cε(jQ)‖v + w‖Cε(jQ)

≤‖Ψ‖Cε(jQ)‖v + w‖2Cε(jQ) +
2‖Ψ‖2Cε(jQ)‖v + w‖2Cε(jQ)

γ

+
γ

2
‖w‖2Cε(jQ),
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where the last inequality holds since 2xy ≤ x2

β
+ βy2 for any

x, y, β ∈ R. This implies(
1 +

2

γ
‖Ψ‖Cε(jQ)

)
‖Ψ‖Cε(jQ)‖v + w‖2Cε(jQ) (6)

≥ γ‖v‖2Cε(jQ) +
γ

2
‖w‖2Cε(jQ)

≥ γ

2
‖w‖2Cε(jQ)

=⇒ ‖v + w‖2Cε(jQ) ≥ η2‖w‖2Cε(jQ), (7)

for any positive η ≤ γ√
2‖Ψ‖Cε(jQ)(γ+2‖Ψ‖Cε(jQ))

.

Now observe that τ ∈ [0, 1] 7→ τG is continuous in the
graph topology induced by the gap metric by Lemma 4.3. Since
the feedback interconnection [∆, τG] is H2ε-stable for τ = 0,
inequality (7) implies that the corresponding robust stability margin
b∆,0 ≥ η > 0; see (2). By continuity in the graph topology,
there exists an ζ > 0 such that δ(hG, (h + τ)G) < η for all
τ ∈ [0, ζ] and h ∈ [0, 1 − ζ]. Application of Proposition 4.2 then
leads to the feedback interconnection of ∆ and τG being H2ε-
stable for τ ∈ [0, ζ]. By (7), it follows again that b∆,ζG ≥ η > 0.
Repetitively applying the aforementioned arguments yields stability
of the feedback interconnection [∆, τG] for τ ∈ [ζ, 2ζ], [2ζ, 3ζ], . . .
in succession, and eventually for τ = 1, as required.

The main IQC-based result on synchronisation is stated next.
Theorem 4.5: The feedback configuration in Figure 1, where Z is

a proper rational scalar transfer function analytic with imaginary-axis
poles in jQ, P :=

⊕n
i=1 Pi : Pi ∈ S;Pi(jq) 6= 0 ∀jq ∈ jQ, and

Γ ∈ Sn×n satisfies Assumption 3.1 reaches synchronisation if there
exists a Hermitian Π ∈ C2n×2n such that for all ω ∈ R \ Q =
(q1,∞) ∪ (q2, q1) ∪ . . . ∪ (qK , qK−1) ∪ (−∞, qK),

(i)
[

In
Z(jω)P (jω)

]∗
Π(jω)

[
In

Z(jω)P (jω)

]
≥ 0;

(ii)
[
τΓ(jω)
In

]∗
Π(jω)

[
τΓ(jω)
In

]
≤ −γ ∀τ ∈ [0, 1], where γ is

some strictly positive constant.

Proof: Let Ψ := 2Π + γI . The quadratic inequalities above can
thus be restated as[

In
Z(jω)P (jω)

]∗
Ψ(jω)

[
In

Z(jω)P (jω)

]
≥ γ[

τΓ(jω)
In

]∗
Ψ(jω)

[
τΓ(jω)
In

]
≤ −γ,

for all ω ∈ R \Q and τ ∈ [0, 1]. Given ε > 0, define Ψ̄ε ∈ Cε(jQ)
by Ψ̄ε(s) := Ψ(jω) for s = σ + jω ∈ Cε(jQ). Since Z, P , and
Γ are analytic on C+, it follows that there exists a sufficiently small
ε∗ > 0 such that[

In
Z(s)P (s)

]∗
Ψ̄ε(s)

[
In

Z(s)P (s)

]
≥ γ

2
;[

τΓ(s)
In

]∗
Ψ̄ε(s)

[
τΓ(s)
In

]
≤ −γ

2

for all s ∈ Cε(jQ), τ ∈ [0, 1], and 0 < ε ≤ ε∗. These imply that
〈v, Ψ̄εv〉Cε(jQ) ≥ 0 for all v ∈ Gε (ZP ) and 〈w, Ψ̄εw〉Cε(jQ) ≤
− γ

2
‖w‖2Cε(jQ) for all w ∈ G ′ε (τΓ) and τ ∈ [0, 1]. By Theorem 4.4,

it follows that the feedback configuration [ZP,Γ] is H2ε-stable for
all 0 < ε ≤ ε∗. In turn, this implies that

Z(s)P (s) (I − Γ(s)Z(s)P (s))−1 = P (s)

(
1

Z(s)
I − Γ(s)P (s)

)−1

(8)

has no poles on C̄+\jQ, i.e. det( 1
Z(s)

I−Γ(s)P (s)) has no zeros on
C̄+ \jQ. Moreover, by Assumption 3.1, det( 1

Z(s)
I−Γ(s)P (s)) has

a zero at every s ∈ jQ corresponding to the null space N satisfying
P (s)N ⊂ span{1n}, and the multiplicity of the zero is the same as
that of the pole s of Z. This implies that for any u ∈ L2, x̂(s) :=

P (s)
(

1
Z(s)

I − Γ(s)P (s)
)−1

û(s) has poles in jQ if and only if
the output of P (s) is in span{1n}, i.e. they arise as an element of
Z(s)span{1n} (up to a difference by possibly some zeros). x̂(s) may
also have open-left-half-plane poles which contribute to the transients
in x(t), but any sustained behaviour as t → ∞ must correspond to
an object in Z(s)span{1n}.

Now note that for any e, f ∈ L2, it can be derived from (1) with
∆ = ZP and G = Γ (cf. Figure 1) that

ŷ = ZP (I − ΓZP )−1(ê+ Γf̂) = P

(
1

Z
I − ΓP

)−1

(ê+ Γf̂).

By the analysis above, ŷ has no poles on C̄+ \ jQ. Also, either (i)
ŷ has poles in the open left half plane only, in which case y ∈ L2

and y(t) converges to 0 (the trivial synchronised equilibrium), or (ii)
ŷ has marginally stable poles at every point in jQ with the same
multiplicity of the corresponding pole of Z and they arise as an
element of Z(s)span{1n}. Note that in this case the open-left-half-
plane poles of ŷ give rise to modes in y(t) that exponentially decay
to 0 as t→∞ while the marginally stable modes in Z(s)span{1n}
lead to sustained asymptotic behaviour. In other words, the feedback
reaches synchronisation where the asymptotic behaviour is defined
by the imaginary-axis poles of Z, as required.

Remark 4.6: It can be seen from the proof of Theorem 4.4 that
the conditions of Theorem 4.5 may also be written as

(i)
[

In
Z(jω)P (jω)

]∗
Π(jω)

[
In

Z(jω)P (jω)

]
≥ γ > 0;

(ii)
[
τΓ(jω)
In

]∗
Π(jω)

[
τΓ(jω)
In

]
≤ 0 ∀τ ∈ [0, 1],

for all ω ∈ R \ Q; or

(i)
[

In
τZ(jω)P (jω)

]∗
Π(jω)

[
In

τZ(jω)P (jω)

]
≥ γ ∀τ ∈ [0, 1];

(ii)
[
Γ(jω)
In

]∗
Π(jω)

[
Γ(jω)
In

]
≤ 0,

for all ω ∈ R \ Q.
Remark 4.7: The frequency-dependent quadratic inequalities in

Theorem 4.5 are often verified numerically when distributed-
parameter transfer functions are involved. In the case where the
transfer functions are proper and rational, the inequalities with a
fixed τ ∈ [0, 1] can be equivalently transformed into linear matrix
inequalities (LMIs) via the generalised Kalman-Yakubovich-Popov
(KYP) lemma [32]. The feasibility of LMIs can then be verified
efficiently via semidefinite programming.

V. DISTRIBUTED SYNCHRONISATION CERTIFICATES

In this section we derive synchronisation certificates that can
be verified in a distributed manner by employing the IQC result
established earlier. These certificates also scale well with the addition
or removal of dynamic agents. Some Nyquist-type results on multi-
agent consensus are subsequently shown to be special cases of the
certificates.

A. IQC stability conditions

Consider the feedback interconnection in Figure 2, where P :=⊕n
i=1 Pi : Pi ∈ S, Z is a scalar proper rational transfer function

analytic with a finite number of imaginary-axis poles jQ, Γ :=⊕m
i=1 Γi : Γi ∈ S, and D denotes the incidence matrix of a

connected undirected graph G. Suppose Γ satisfies Assumption 3.1
and Pi(jq) 6= 0 ∀jq ∈ jQ, i = 1, . . . n.
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Given a B ∈ Cm×n such that Bij 6= 0 whenever DT
ij 6= 0 and

|B•j | = 1 for i = 1, 2, . . . , n, j = 1, 2, . . . ,m, i.e. columns of B
are normalised, let

Cij :=

{
0 if Bij = 0
B−1
ij otherwise. (9)

Theorem 5.1: Suppose there exist B ∈ Cm×n as above, H :=⊕n
i=1 Hi, J :=

⊕n
i=1 Ji with Hi, Ji ∈ C and K ∈ Cn×n such

that Hi +H∗i is positive definite, Ji,K are positive semidefinite for
i = 1, . . . , n, and

(i) [DΓ(jω)∗DT ](τJ(jω) − K(jω))[DΓ(jω)DT ] ≤ 0 for all
τ ∈ [0, 1] and ω ∈ R \ Q;

(ii) for all i = 1, . . . ,m and ω ∈ R \ Q,[
In
In

]∗
Πi(jω)

[
In
In

]
≥ γ > 0, (10)

where
Πi =

[
H +H∗ + J Φi

Φ∗i Ωi

]
,

with

Φi := −H(diag(C∗i•)D•i)Γi(D
T
i•diag(Ci•))ZP,

Ωi := − (ZP )∗ diag(C∗i•)D•iΓ
∗
iD

T
i•KD•iΓi(D

T
i•diag(Ci•))ZP,

(11)

and C is as defined in (9). Then the feedback connection in Figure 2
reaches synchronisation.

Proof: It is established below that the hypothesis implies[
τDΓ(jω)DT

In

]∗
Π(jω)

[
τDΓ(jω)DT

In

]
≤ 0 (12)

and [
In

Z(jω)P (jω)

]∗
Π(jω)

[
In

Z(jω)P (jω)

]
≥ γ > 0 (13)

for all τ ∈ [0, 1] and ω ∈ R \ Q, where

Π :=

[
H +H∗ + J −HDΓDT

−DΓ∗DTH∗ −DΓ∗DTKDΓDT

]
. (14)

Synchronisation then follows from Theorem 4.5 and Remark 4.6.
Now note that[

τDΓ(jω)DT

Ipm

]∗
Π(jω)

[
τDΓ(jω)DT

Ipm

]
= τ(τ − 1)(DΓ(jω)∗DTH(jω)∗DΓ(jω)DT )

+ τ(τ − 1)(DΓ(jω)∗DTH(jω)DΓ(jω)DT )

+ [DΓ(jω)∗DT ](τ2J(jω)−K(jω))[DΓ(jω)DT ]

≤ 0 ∀ω ∈ R \ Q and τ ∈ [0, 1],

(15)

where hypothesis (i) has been used for the last inequality. This
establishes (12). The rest of the proof shows that hypothesis (ii) leads
to (13).

Notice that

Φ := −HDΓDTZP = −H
p∑
i=1

D•iΓiD
T
i•ZP

=

p∑
i=1

diag(B∗i•)Φidiag(Bi•).

(16)

Likewise,

Ω := −P ∗Z∗DΓ∗DTKDΓDTZP =

p∑
i=1

diag(B∗i•)Ωidiag(Bi•).

(17)

Since |B•j | = 1 for j = 1, 2, . . . , p, it follows that
p∑
i=1

diag(B∗i•)diag(Bi•) = In.

As such,[
In
ZP

]∗
Π

[
In
ZP

]
=

[
In
In

]∗ [
H +H∗ + J Φ

Φ∗ Ω

] [
In
In

]
=

p∑
i=1

[
In
In

]∗ [
diag(B∗i•) 0

0 diag(B∗i•)

] [
H +H∗ + J Φi

Φ∗i −Ωi

]
[
diag(Bi•) 0

0 diag(Bi•)

] [
In
In

]
,

where (16) and (17) have been used in the last equality. It thus follows
that hypothesis (ii) implies (13). This completes the proof.

The prowess of Theorem 5.1 lies in the decentralised nature and
scalability of condition (ii). In particular, the stability test involves
only the frequency responses of the weighting transfer function Γi on
the ith edge and the associated two vertices or agents in P , as related
via the ith column of incidence matrix D; see (11). If an additional
agent joins the network, only the corresponding certificates for the
new edges need to be verified to conclude synchronisation.

B. Specialisation to Nyquist-based results

Define for i = 1, . . . ,m, the weighted loop gain or return ratio

Li := −(diag(C∗i•)D•i)Γi(D
T
i•diag(Ci•))ZP. (18)

Also let `α be a straight line passing through the (−1, 0j) point on
the complex plane in the direction α ∈ C

`α := {rα− 1 : r ∈ R}. (19)

Given a matrix M ∈ Cn×n and a positive definite Hermitian Ĥ ∈
Cn×n, define the generalised inner product variation of the numerical
range or field of values of M by Ĥ as

NĤ(M) := {x∗ĤMx : x ∈ Cn, x∗Ĥx = 1}, (20)

which is a closed subset of Cn.

Proposition 5.2: Suppose there exist an α ∈ C and an Ĥ :=⊕n
i=1 Ĥi with positive definite Ĥi ∈ C such that for every i ∈

{1, . . . ,m} and ω ∈ R \ Q,

NĤ(jω)(Li(jω)) ∩ `α = ∅. (21)

Then the network given by the feedback interconnection of ZP and
DΓDT in Figure 2 reaches synchronisation.

Proof: Suppose α has non-zero real and imaginary parts, i.e.
<(α) 6= 0 and =(α) 6= 0, then for a fixed ω ∈ R \ Q, (21) implies

<(β(z + 1))

|β||z + 1| ≥ γ̄ (22)

for all z ∈ NĤ(jω)(Li(jω)) and some γ̄ > 0, where β = α∗ if
NĤ(jω)(Li(jω)) lies to the right of `α and β = −α∗ otherwise. To
see this, note that (21) implies that the angle between β and z+ 1 is
strictly between −π

2
and π

2
, which is equivalent to (22). The case for

zero real or imaginary part of α can be treated similarly. In particular,
β can be chosen to be αej

π
2 or αe−j

π
2 depending on the orientation

of NĤ(jω)(Li(jω)) with respect to `α.
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Now observe that (21) and (22) hold only if <(β(z+ 1)) ≥ γ̂ for
all z ∈ NĤ(jω)(Li(jω)) and some γ̂ > 0. That is, for all x 6= 0,

<

(
β

(
x∗Ĥ(jω)Li(jω)x

x∗Ĥ(jω)x
+ 1

))
≥ γ̂

=⇒ <(β(x∗Ĥ(jω)Li(jω)x+ x∗Ĥ(jω)x)) ≥ γ̂x∗Ĥ(jω)x

=⇒ β(x∗Ĥ(jω)Li(jω)x+ x∗Ĥ(jω)x)

+ (β(x∗Ĥ(jω)Li(jω)x+ x∗Ĥ(jω)x))∗ ≥ γ̂x∗Ĥ(jω)x.

This in turn implies that

βĤ(jω)Li(jω) + β∗Li(jω)∗Ĥ(jω)∗ + βĤ(jω) + β∗Ĥ(jω)∗ ≥ γ,

where γ := γ̂ inf
ω∈R

σ(Ĥ) > 0 and σ(·) denotes the smallest

eigenvalue of a Hermitian matrix. Letting H := βĤ and noting
by (11) and (18) that Φi = HLi yields[

In
In

]∗ [
H(jω) +H(jω)∗ Φi(jω)

Φi(jω)∗ 0

] [
In
In

]
≥ γ, (23)

which is (10) with J = 0 and K = 0. As such, (21) implies
condition (ii) of Theorem 5.1. Furthermore, note that for this choice
of J and K, it is immediate that condition (i) of the same theorem
holds trivially. The claim on synchronisation thus follows from
Theorem 5.1.

Proposition 5.2 can be seen as a generalisation of [21, Thm. 1].
To be specific, the latter derives distributed conditions of the form
(21) for feedback stability while the former extends these to the
problem of synchronisation. In [21, Section III.E], the field of values
NĤ(jω)(Li(jω)) in (21) is shown to be an ellipse on the complex
plane, since only SISO agents are considered. Correspondingly, [21,
Lem. 4] establishes that the optimal Ĥ which gives rise to the least
conservative test (21) (or the ‘smallest’ ellipse NĤ(jω)(Li(jω)))
takes the form:

Ĥ(jω) :=

n⊕
i=1

((ZPi(jω))∗ZPi(jω) + η)
1
2 , (24)

where η is a small positive constant to ensure the positive def-
initeness of Ĥ . In fact, by choosing the optimal Ĥ and setting
Bij := DT

ij/|DT
•j | in (9), one obtains the following corollary of

Proposition 5.2.
Corollary 5.3: Suppose there exist an α ∈ C such that the line `α

does not intersect the ellipse with foci at the origin and at fi(jω),
and major axis length ai(jω) for all i = 1, . . . ,m, ω ∈ R\Q, where

fi(jω) := −Γi(jω)
∑

j:DTij 6=0

njZ(jω)Pj(jω)

ai(jω) := |Γi(jω)|
∑

j:DTij 6=0

|njZ(jω)Pj(jω)|

and nj := |DT
•j |2 denotes the number of neighbours of Pj , then the

feedback interconnection in Figure 2 reaches synchronisation.
Proof: The result follows from the fact that for the choice of Ĥ

in (24) and C in (9) defined by Bij := DT
ij/|DT

•j |, the numerical
range NĤ(jω) in Proposition 5.2 equals to the ellipse described in the
statement of the corollary. The details can be found in [21, Section
III.E].

Remark 5.4: In the case where Z(s) = 1
s

, the distributed consen-
sus certificates derived in Corollary 5.3 are tighter than those in [13,
Thm. 1], by virtue of the fact that the ellipses in the former are
subsets of the S-hulls employed in the latter; see [21, Appendix B].
This parallels the claim therein that [21, Prop. 1] is less conservative
than the results in [33], where feedback stability is concerned.

VI. CONSENSUS FOR SYSTEMS WITH COMMUNICATION DELAYS

This section demonstrates that some of the standard Nyquist
stability criteria for systems with feedback delays imply the IQC
conditions developed earlier. Together with the distributed synchro-
nisation certificates in the previous section, this serves to affirm the
claim that the main IQC framework in Section IV unifies various
related results in the literature.

Consider Figure 1 with Z(s) := 1
s

and n transfer functions

yi(s) =
1

s
Pi(s)ui(s),

where ui and yi are the input and output of agent i, respectively, and
Pi ∈ S for i = 1, . . . , n. Define P := diag(Pi). Let the topology
of the network be described by an connected undirected graph G =
(V,E) with a weighted adjacency matrix A = [aij ] ∈ Rn×n, where
aij > 0 if agent i and j are connected and aij = 0 otherwise. The
valency of agent i is denoted bi :=

∑n
j=1 aji and define the valency

matrix by B := diag(bi) ∈ Rn×n. Consider the following three
types of time-delay feedback control laws based on [26]:

1) feedback control without self-delay

ui(t) = −
n∑
j=1

aji
bi

(yi(t)− yj(t− τji));

2) feedback control with identical self-delay

ui(t) = −
n∑
j=1

aji
bi

(yi(t− τji)− yj(t− τji))

3) and feedback control with different self-delay

ui(t) = −
n∑
j=1

aji
bi

(yi(t− Tji)− yj(t− τji)),

where τji ≥ 0 and Tji ≥ 0 for i, j = 1, . . . , n denote the constant
delay terms. The feedback without self-delay models transmission
delays for data sent from one agent to another over a communication
network. Feedback with identical self-delay is commonly used for
situations where there are computation or reaction delays in the
agent’s own state behaviour. The situation modelled by a feedback
with different self-delay arises when the delay associated with the
agent’s own behaviour differs from that of its neighbours.

To represent the aforementioned feedback laws in the Laplace
domain, define the delay-dependent adjacency matrix Aτ (s) :=
[ajie

−τjis] and valency matrices

Bτ (s) := diag

(
n∑
j=1

ajie
−τjis

)
and

BT (s) := diag

(
n∑
j=1

ajie
−Tjis

)
.

By defining u(s) := (u1(s), . . . , un(s))T and y(s) :=
(y1(s), . . . , yn(s))T , it is straightforward to verify that the feedback
controller without self-delay, feedback controller with identical self-
delay, and feedback controller with different self-delay can be realised
respectively by the following transfer functions Γ1, Γ2, and Γ3 in
Sn×n:

u(s) = −Γ1y(s) = −(I −B−1Aτ (s))y(s);

u(s) = −Γ2y(s) = −B−1Lτ (s)y(s);

u(s) = −Γ3y(s) = −B−1(DT (s)−Aτ (s))y(s),

(25)

where Lτ (s) := Bτ (s)− Aτ (s) denotes the delay-dependent graph
Laplacian matrix. Note that Γr satisfies Assumption 3.1 for all r =
1, 2, 3 with jQ being a singleton containing only the origin of the
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complex plane. The consensus problems involving different types of
communication delays are thus modelled by Figure 1 as feedback
interconnections [ 1

s
P,Γr] for r = 1, 2, 3.

Observe from (8) and the arguments in the proof for the synchro-
nisation Theorem 4.5 that consensus is achieved if the characteristic
equation of the closed-loop system

det(sI − P (s)Γr(s))

has no zeros in C̄+ \ {0} and has a simple zero at 0; see also [26,
Section 2.2.]. The latter follows from the connectedness of the
underlying graph G as in the aforementioned proof. On the other
hand, the former is equivalent to det(I +Gr(s)) having no zeros in
C+, where the return ratio

Gr(s) := −1

s
P (s)Γr(s).

This can in turn be guaranteed by the generalised Nyquist crite-
rion [34]:

σ(Gr(jω)) ∩ `α = ∅ ∀ω ∈ (0,∞), (26)

where σ(·) denotes the spectrum of a matrix, α ∈ C and `α is a
straight line passing through (−1, 0j) as defined in (19).

It is well-known that for an M ∈ Cn×n, σ(M) ⊂ NI(M) [29],
where NI denotes the field of values defined in (20) with respect to
the identity I ∈ Rn×n. Thus, a sufficient condition for (26) is

NI(Gr(jω)) ∩ `α = ∅ ∀ω ∈ (0,∞), (27)

which also implies NI(Gr(jω))∩ `α = ∅, ∀ω ∈ (−∞, 0) inasmuch
as Gr(−jω) = Gr(jω)∗. Such a condition is commonly employed
in the literature for consensus, see for example [26], [13]. Notice the
similarity of this condition to (21). By the same arguments employed
in the proof for Proposition 5.2 to show that (21) implies (23), it
follows that (27) implies there exists a β ∈ C such that[

In
In

]∗ [
βIn + β∗In βGr(jω)
β∗Gr(jω)∗ 0

] [
In
In

]
≥ γ,

or equivalent,[
In

1
jω
P (jω)In

]∗ [
βIn + β∗In −βΓr(jω)
−β∗Γr(jω)∗ 0

] [
In

1
jω
P (jω)In

]
≥ γ,

(28)

for all ω ∈ R \ {0} and some γ > 0. Note also that[
τΓr(jω)
In

]∗ [
βIn + β∗In −βΓr(jω)
−β∗Γr(jω)∗ 0

] [
τΓr(jω)
In

]
≤ 0

for all τ ∈ [0, 1] and ω ∈ R \ {0}. As such, the conditions in
Remark 4.6 holds for

Π :=

[
βIn + β∗In −βΓr
−β∗Γ∗r 0

]
. (29)

and consensus of the feedback interconnection [ 1
s
P,Γr] thus follows

from Theorem 4.5 for r = 1, 2, 3, which correspond to different types
of delays given in (25).

In effect the consensus condition (21) merely implies the IQC
expression (28) involving a specific type of multiplier Π stated in
(29). Theorem 4.5 is more general in the sense that generic multipliers
Π can be employed to conclude synchronisation. This can be achieved
by exploiting known structures of the open-loop systems as in the
classical IQC analysis theory [15], as demonstrated in the succeeding
section where agents with uncertain feedback delays are considered.

VII. ILLUSTRATIVE EXAMPLES

A. Convergence of a standard consensus algorithm

This subsection analyses the convergence of a standard consensus
algorithms in [5, Chapter 2] via IQCs. The weighted adjacency matrix
An = [aij ] ∈ Rn×n of a directed graph G = (V,E) is defined such
that aii = 0, aij > 0 is a positive weight if (vj , vi) ∈ E and aij = 0
otherwise. The directed Laplacian matrix Ln = [`ij ] ∈ Rn×n is
defined as

`ii :=

n∑
j=1,j 6=i

aij , `ij := −aij , i 6= j.

Suppose that G contains a directed spanning tree, then Ln has a
simple zero eigenvalue corresponding to the eigenvector 1n and
all other eigenvalues of Ln have positive real parts [5, Lem. 2.4].
The following continuous-time consensus algorithm is commonly
employed [5, Chapter 2]:

ẋ(t) = −Lnx(t). (30)

It is known that the algorithm achieves consensus if, and only if, G
has a directed spanning tree [5, Thm. 2.8]. We establish below that
sufficiency of this result can be recovered from Theorem 4.5 using a
particular multiplier.

Note that (30) can be modelled by the feedback interconnection in
Figure 1 with P = In, Z(s) = 1

s
, and Γ = −Ln. That Γ satisfies

Assumption 3.1 follows from G containing a directed spanning tree.
Let v ∈ Rn be such that LTnv = 0 and vT 1n = 1. Define

Π :=

[
(In + 1nv

T )T

LTn

] [
In + 1nv

T Ln
]
.

It is straightforward to see that[
Γ
In

]T
Π

[
Γ
In

]
≤ 0.

Furthermore, for all τ ∈ [0, 1] and ω ∈ R such that ω 6= 0, observe
that [

In
τ 1
jω
In

]∗
Π

[
In

τ 1
jω
In

]
=

(
In + 1nv

T +
τ

jω
Ln

)∗(
In + 1nv

T +
τ

jω
Ln

)
≥ 0.

Given any α ∈ C, note that the eigenvalues of 1nv
T + αLn consist

of 1 and αλ, where λ is any nonzero eigenvalue of Ln, which has a
positive real part [5, Lem. 2.4]. It follows that In + 1nv

T + τ
jω
Ln

has no eigenvalues that are arbitrarily close to 0 for all τ ∈ [0, 1],
ω ∈ R \ {0}. Therefore, there exists a γ > 0 such that(

In + 1nv
T +

τ

jω
Ln

)∗(
In + 1nv

T +
τ

jω
Ln

)
≥ γ

for all τ ∈ [0, 1], ω ∈ R \ {0}. Consensus thus follows from
Theorem 4.5 and Remark 4.6.

B. Output-synchronisation of agents with uncertain communication
delays

In this subsection, we consider three examples of synchronisation
in heterogeneous networks with uncertain but bounded communi-
cation delays. Synchronisation is established using Theorem 4.5.
Consider n = 5 agents deployed on a line (connected in series
by m = 4 undirected edges) whose dynamics are described by
hi(s) = Z(s)Pi(s), for i = 1, . . . , 5, where Z(s) represents a
nominal model and Pi(s) a stable multiplicative perturbation.
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The interconnection operator takes the form

Γ(s) = K(s)DE(s)DT , (31)

where D denotes the incidence matrix, K(s) represents a pre-
processing of the input to each agent, and the diagonal transfer matrix
E(s) := diag(e−τis). Each delay τi is selected randomly uniformly
from the interval [0, τ̄ ] for i = 1, . . . , 4. Figure 4 depicts the feedback
interconnection of the network described above.

diag(Pi)

E

y
Z · In

DTDK · In

Fig. 4. Feedback interconnection involving uncertain communication delays.

The following multiplier is employed in the IQC analysis:

Π(jω) := π(jω)⊗ In

π(jω) := γ1(jω)

[
1 0
0 −1

]
+ γ2(jω)

[
−ω2
∗Φ1(ω∗)− Φ2(ω∗) jω∗Φ1(ω∗) + Φ2(ω∗)

−jω∗Φ1(ω∗) + Φ2(ω∗) ω2
∗Φ1(ω∗)− Φ2(ω∗)

]
(32)

where ω∗ := 1
2
ωτ̄ ,

Φ1(jω) :=

{
sin(ω)
ω

, |ω| < π

0, |ω| ≥ π
,

Φ2(jω) :=

{
cos(ω), |ω| < π

0, |ω| ≥ π
,

γ1(·) is any bounded measurable function on jR, and γ2(·) any non-
negative bounded measurable function on jR. First of all, note that
(here, to avoid confusion, θ is the homotopy parameter, previously
denoted τ in Theorem 4.5)[

In
θE(jω)

]∗
Π(jω)

[
In

θE(jω)

]
≥ 0 for all ω ∈ R and θ ∈ [0, 1].

(33)

Indeed, as shown in [15, Section IV.H] and [35, Lem. 15], the SISO
operator ∆(v(t)) := v(t−τ) with τ ∈ [0, τ̄ ] satisfies the IQC defined
by π in (32). The extension to the diagonal E(s) by means of the
Kronecker product is straightforward. Synchronisation would then be
established if[

DTZ(jω)P (jω)K(jω)D
I

]∗
Π(jω)

[
DTZ(jω)P (jω)K(jω)D

I

]
≤− c < 0

(34)

for some γ1(·) and γ2(·) and all ω ∈ R \ Q, with jQ being the set
poles of Z on jR. This follows from the fact that conditions (33)
and (34) are equivalent to those in Theorem 4.5.

In the following three examples, condition (34) is numerically
verified. The maximum (real) eigenvalue of the matrix on the left
hand side of (34) is computed, and its negativity checked across
frequency.

Consensus with delayed communication: Let Z(s) := 1
s

, which
corresponds to a perturbed consensus network in Figure 4 in which a
high-frequency zero-pole combination is adopted for each perturba-

tion Pi(s) := 1+s/ai
1+s/Ki

, where ai = 0.9Ki, and Ki is taken uniformly
randomly from the interval [10, 15], for i = 1, . . . , 5. Let the upper
bound of the delay be τ̄ := 0.3 and K(s) := 1. By defining

γ1(jω) :=

{
0.1, |ω| < 1

1, |ω| ≥ 1
and γ2(jω) :=

0.1

1 + ω2
,

inequality (34) is satisfied for c = 4 × 10−4. Figure 5 illustrates
the results, where the clocks’ initial start times are taken uniformly
randomly from [0, 10]. On the left of the figure it can be seen that
the outputs of the agents converge to a common constant value. The
right half of the figure shows the maximum eigenvalue of the left
hand side of (34) on a dense frequency grid in R \ {0}.
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Fig. 5. Numerical simulation for perturbed consensus. At the top, an output
simulation plot. At the bottom, numerical evaluation of maximum eigenvalue
of the left hand side of (34) for frequencies on a dense grid in R \ {0}.

Oscillators with delayed communication: Let Z(s) := 1
s2+ω2

0
with

ω0 := π
2

. In this setting, Figure 4 models a network of perturbed
oscillators, which finds applications in power generators [2], for
instance. Let the upper bound of the delay be τ̄ := 0.1 and
K(s) := s+0.1

1+s/100
. Correspondingly, inequality (34) can be verified

to hold with

γ1(jω) :=

{
0.099, |ω| < 1

1, |ω| ≥ 1
and γ2(jω) :=

0.1

1 + ω2
.

Simulation results are given in Figure 6, where the outputs of the
agents are shown to agree on a common sinusoid of frequency ω0

over time.

Double integrators with delayed communication: Let Z(s) := 1
s2

,
which yields a network of perturbed double integrators in Figure 4.
Such a setup may be applied to the problem of clock synchronisation
in the following way [14]: a single clock with uncertain skew δi with



10

0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

8

Outputs

Time

O
u
tp
u
ts

−30 −20 −10 0 10 20 30
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Criterion

ω

Fig. 6. Numerical simulation for perturbed oscillators with natural frequency
ω0 = π

2
. At the top, an output simulation plot. At the bottom, numerical

evaluation of maximum eigenvalue of the left hand side of (34) for frequencies
on a dense grid in R \ {±ω0}.

respect to the absolute time t provides the following estimate of t:

ti(t) = ti(t0) + δisi(t)(t− t0),

where si(t) is a skew-correcting tunable parameter and t0 is the
initial absolute instant at which the clock starts reading the time. If
the clock is isolated, si(t) is initialized and kept equal to any constant
value. If available, a natural choice is the reciprocal of the nominal
value of the skews, denoted δ0, so that the estimate ti(t) evolves as
a ramp with slope δi

δ0
with respect to the absolute time, i.e., ti(t) =

ti(t0)+ δi
δ0

(t− t0). In practice, the estimates of different clocks tend
to drift away due to the non-equal skews, so compensation is needed
if the goal is to obtain a common estimate of the absolute time. Here
it is assumed that neighbouring clocks exchange their time estimates
at each instant, compute the controls via the interconnection matrix
Γ(s), and update both the estimate ti(t) and the skew correction
si(t).

Such a control scheme has already appeared in the literature [36],
but has the undesirable feature that clocks estimates can be subjected
to large variations. In order to smooth the influence of the control,
the actual time estimate evolves according to

ṫri (t) = κ(ti(t)− tri (t)),

where κ > 0 is a tunable parameter. In state-space form, the
augmented system evolves according to

ẋi(t) =

0 δi 0

0 0 0

κ 0 −κ

xi(t) +

b1b2
0

ui(t)
yi(t) =

[
0 0 1

]
xi(t) = Cxi(t),

where xi(t) =
[
ti(t) si(t) tri (t)

]T ∈ R3, yi(t) = tri (t) is the
output of the i-th clock, ui(t) is the control to the i-th clock, and b1,
b2, κ are parameters to be designed. The resulting transfer function
of the i-th clock is

Pi(s)Z(s) =
b1s+ b2δi
s2(1 + s/κ)

,

where Z(s) = 1
s2

and Pi(s) = b1δis+b2
1+s/κ

. Notice that the multiplicity
of the pole at the origin is 2. While κ may be known to all clocks,
each clock is characterised by an uncertain zero location.

Consider now the feedback control scheme in Figure 4, where
the control input to each clock is updated based on information
regarding the outputs of itself and the neighbouring clocks, subject
to uncertain delays. In the following example, each skew is taken
uniformly randomly δi ∼ U [δ0 − ε, δ0 + ε], where δ0 = 1 is the
nominal skew and ε = 0.5. Let b1 = b2 = 1, κ = 50. Also, let
the upper bound on the delay be τ̄ := 0.2, and consider the pre-
processing filter

K(s) :=
s

1 + s/5
.

Notice that by the definition in (31), Γ(0)1n = 0 and also
lims→0

1
s
Γ(s)1n = 0, whereby Assumption 3.1 is satisfied. Using

γ1(jω) :=

{
0.01, |ω| < 1

1, |ω| ≥ 1
and γ2(jω) :=

0.1

1 + ω2
,

inequality (34) can be verified to hold. The results are illustrated in
Figure 7, where the clock/agent outputs exhibit smooth behaviour
and can be seen to agree on a common ramp function over time.
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Fig. 7. Numerical simulation for perturbed double integartors. At the top,
an output simulation plot. At the bottom, numerical evaluation of maximum
eigenvalue of the left hand side of (34) for frequencies on a dense grid in
R \ {0}.
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C. Distributed certification of synchronisation for time-delay systems

Consider n number of systems P1, . . . , Pn, whose respective
outputs are described by

yi(t) =

(
2

π

)2

sin
(π

2
t
)
∗ 1

ni

∑
j:vj∈Ni

µ[(yi(t− 1)− yj(t− 1))]

i = 1, . . . , n,
(35)

where the symbol ∗ denotes the convolution operation, ni = |Ni|
denotes the number of neighbours of the node vi, and µ > 0 is a
parameter. Here it is assumed that the agents communicate between
themselves according to a given connected undirected graph structure
G = (V,E) with the oriented (resp. unoriented) incidence matrix
D ∈ Rn×m (resp. D̄ ∈ Rn×m). The network (35) can be expressed
in terms of the feedback interconnection depicted in Figure 2, where
P = diag(Pi), Pi := 1

ni
, Z(s) := 1

s2+(π
2

)2
, and Γj(s) := µe−s for

i = 1, . . . , n and j = 1, . . . ,m.
Proposition 7.1: The feedback interconnection modelling (35)

reaches synchronisation for µ ≤ 1.23 and arbitrary network topology,
i.e. arbitrary connected undirected graph G.

Proof: Define B = [Bij ] ∈ Rn×m by Bij := DT
ij/|DT

•j |,
C ∈ Rn×m as in (9), H := In, J := 0 and K := 0. Notice
that condition (i) of Theorem 5.1 holds trivially for this choice of J
and K. Furthermore, it can be verified in a distributed manner that
condition (ii) also holds for µ ≤ 1.23. In particular, by expanding
the left-hand side of (10), it yields that for all i = 1, . . . ,m

Λ(jω) := H(jω) +H(jω)∗ −H(jω)(diag(C∗i•)D•i)Γi(jω)

(DT
i•diag(Ci•))Z(jω)P (jω)

− P (jω)∗Z(jω)∗(diag(C∗i•)D•i)Γi(jω)∗

(DT
i•diag(Ci•))H(jω)∗

= 2In −
(
µ

e−jω

(π
2

)2 − ω2
− µ ejω

(π
2

)2 − ω2

)
D̄•iD̄

T
i•

= 2In −
(
µ

2 cos(ω)

(π
2

)2 − ω2

)
D̄•iD̄

T
i•.

Moreover, it holds that for µ ≤ 1.23 and ω ∈ R \ {π
2
,−π

2
}, there

exists γ > 0 such that Λ(jω) ≥ γ. The claim thus follows by
Theorem 5.1.

The bound on µ obtained by applying the distributed synchro-
nisation certificate of Theorem 5.1 is tight to within two decimal
places for the simple time-delay network (35). As an illustration,
Figure 8 shows the outputs of n = 3 agents connected by m = 2
communication links for µ = 1.20. There the input to the first agent is
perturbed by a pulse of magnitude 20 lasting for 1s at the beginning of
the simulation. It can be observed that the outputs eventually converge
to a synchronised trajectory defined by a sinusoidal signal of period
π
2

. On the other hand, when µ is set to 1.24, Figure 9 shows that the
outputs of the agents diverge and never synchronise.

VIII. CONCLUSIONS

The paper demonstrates the application of integral quadratic con-
straint based analysis to the study of synchronisation problems
for heterogeneous multi-agent networks without the use of loop
transformations. To this end, certain gap-metric type results have
been utilised to establish IQC conditions guaranteeing a generalised
notion of closed-loop stability. We introduced an IQC framework for
analysing multi-agent synchronisation. This is subsequently shown to
encompass and extend several Nyquist-type results in the literature.
We also proposed scalable synchronisation certificates that can be
verified in a distributed fashion. A number of simulation examples
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Fig. 8. System outputs for µ = 1.20. Synchronisation to a sinusoid takes
place.
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Fig. 9. System outputs for µ = 1.24. Divergence occurs.

are provided to illustrate the theoretical results. Future research may
involve extending the framework to cooperative formation control,
characterising the speed of synchronisation and accommodating open-
loop unstable agents and nonlinear systems in the IQC framework.
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