Solutions to Exam in FRTN10 Multivariable Control, 2015-10-29

1 a. The small gain theorem gives that the closed loop system is stable if

AP (i) K [loo < 1

This is equivalent to
2K||1/(1 +iw) s < 1

The largest gain value is obtained for w = 0, where |P(0)| = 1, which gives that
K <1/2.

The loop gain is
2K
s+ 1

The gain margin is infinite, since the loop gain has a phase lag of at most 90°. The
closed loop is hence stable for any K > 0. This is an exact analysis.

AP(s)K =

In subproblem a, the stability condition was sufficient but not necessary and the
uncertainty was general. Hence we should expect more conservative results there.

From the relation

we obtain ( ) )
) . 2(w?® + 100 10 + 2w 10 — 1w
Gliw)G(—iw) = w?+25 2 D+iw 5 —iw

V2(s + 10)

Hence G(s) = P

We first note that it is not the absolute weights on the states and inputs that de-
termine the behavior of the closed-loop system, but rather the relative difference
between weights. On that note, we note that case 3 has the highest relative weight
on the second state (velocity), implying a slow step response which makes the step
response in B a likely candidate. The shape of the step response indicate a well-
damped system with almost first-order dynamics, which is the case for the poles in
1. As for comparing case 1 and 2, the latter has a higher relative weight on the first
state (position) and lower weight on the velocity. Both these differences could be
expected to yield a faster closed-loop step response than case 1, meaning that case
2 corresponds to the step response in C and case 1 to A. As for the poles of the
closed loop system, comparing A to C, we expect the poles corresponding to C to
be slightly less damped and faster as compared to those matched with A. Therefore
case 2 pairs with C and II, while case 1 pairs with A and III.

It is also possible to solve the problem by brute force by computing the solutions
to three different Riccati equations and then calculating the resulting poles. This
requires a substantial amount of work however.

. The RGA is the ratio between the open-loop gain and the closed-loop gain for each

input—output combination. We have

RGA(0) = (F/ks hafka)

. For the given RGA(0), u; should be used to control y since the (1,1) element is closer

to 1.



. The sub-determinants are

The system that C is controlling is given by P(s)D. In order to decouple this system
in stationarity, P(s)D could be made diagonal by choosing for example D = P~1(0).
The expression for D is then given by

B 1 [Pzz(o) —P12(0)]
~ P11(0)P2(0) — Py (0)P12(0) | —Po1(0)  Pyi(0) )

D

Another option is to inspect the block diagram. The interaction P»; can be coun-
tered by selecting Doy Pos = — D11 P»1. Similarly, Pjs can be countered by selecting
DooPio = — D12 Py1. Choosing D11 = Dyo = 1 we then obtain the static decoupler

o 1 —P13(0)/P11(0) ]

—P51(0)/P2(0) 1

. The unstable zero at s = 8 implies that the achievable closed-loop speed with reason-

able robustness (e.g. Mg < 2) is smaller than 4 rad/s. The specification of 10 rad/s
can thus not be fulfilled.

The unstable pole at s = 1 implies that the closed-loop speed must be larger than
2 rad/s for reasonable robustness (e.g. M7 < 2). The delay of 0.1 s gives that the
achievable bandwidth will be below 10 rad/s. A specification of 5 rad/s could thus
probably be fulfilled.

. For an unstable pole s = p we must have |Wr(p)| < 1. This necessary condition is

not fulfilled since |[Wr(3)| = 222 > 1.

. The algebraic constraint ‘\5’ | —|T |‘ < 1 is not fulfilled in the bode diagram where

|S| > 3and |T| < 0.5 for some frequencies. The specified S and T are hence impossible
to achieve.
SJ%Q, m so the least common denominator is (s +

2)(s 4 3) which means the poles are —2 and —3.
Rewriting the maximal sub-determinants results in 0

3 2 .
er;;F(SH)’ (532)(s53) Which have

no common zeros. This means that the system has no multivariable zeros.

. There are several solutions to this, two of them are

1. Alt 1:

(dh et ) = (k) =sh (1 2) 4k (0 -2)

2 0 1 2
A:[ ],B:[ ],C:[l 1]
0 -3 0 —2
2. Alt 2:

(72 oom ) =2 (1 5

A:[_O2 _23],3:[(1) (1)],0:(1 0]



C.

Yes! It is clear that the first state does not affect the output, so it is sufficient to
look at the subsystem
P [—2 2]x+[1 O]U
0 -3 0 1
y = [1 0) x

which is equivalent to Alt 2 above. Alternatively, computing C(sI — A)~!'B results
in the transfer function G(s).

. This is shown by straightforward calculations after inserting the gramians in the

corresponding Lyapunov equations:
ATS+SA+BBT =0
ATO+0A+C"TC =0

The Hankel singular values are the square root of the eigenvalues of the matrix

1.25 0
so- ]
0 10

which yield the following Hankel singular values:

=)= ()

. To find a balanced realization, we apply the transformation £ = Tz so that the new

controllability and observability gramians are equal, i.e. S¢ = O¢. To find a suitable
transformation matrix 7', we can use the fact that S and O are diagonal to guide is
to find a diagonal T". The gramians of the transformed system can be expressed in
the old gramians as S¢ =T STT and O¢ = T=TOT~. This yield

t1 0 2.5 0 t1 0
S&- _ _
0ty 0 05 0 ty
(1t 0 05 0 Uty 0 ) o
“lo 1) lo 2 0 1/ts) ¢
2.5t2 = 0.5/t tp =51/
e e
0.5t2 = 20/t3 ty = 40%/4
A balanced realization is then given by
§ = TAT*¢ + TBu = A¢é + Beu
y=CT ¢ =0

Calculations yield

[t O (T A (MR 0 ) (-1 Anfi) (1 —L0G3T
T lo &) lo -1 0o 1/t,) Lo -1 J o -1

2%, t 1.38 0.67
Be =TB = ~
to 0 2.51 0
1/t, 2/t 15 08
Ce=CT ' = Mt 20
0 6/t 0 2.39
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