
Solution to Exam in FRTN10 Multivariable Control 2016-10-25

1 a. The 1× 1 minors of G(s) are

s

s+ 1 ,
−2(s+ 1)
s+ 2 , 3, 1

s+ 2
and the 2× 2 determinant is

s

s+ 1 ·
1

s+ 2 − 3 · −2(s+ 1)
s+ 2 = 6s2 + 13s+ 6

(s+ 1)(s+ 2)

The least common denominator all subdeterminants is (s+ 1)(s+ 2), thus the poles
of G(s) are −1 and −2, both with multiplicity 1.

b. The maximal minor is the 2× 2 determinant 6s2 + 13s+ 6
(s+ 1)(s+ 2) . The zeros are given by

the roots of the numerator polynomial, which are

s = −13
12 ±

5
12

giving the zeros −3/2 and −2/3. The zeros are not in the RHP and hence do not
impose any fundamental limitations.

2 a. The controllability Gramian is the symmetric 2 × 2 matrix Sx that solves the Lya-
punov equation ASx + SxA

T +BBT = 0. Straightforward calculations give

Sx =
(

20 0
0 0.1

)

The system is controllables since the controllability Gramian is non-singular. The
second state is much harder to control than the first one, the second eigenvalue of
Sx being 200 times smaller than the first one.

b. We have
SxOx =

(
20 0
0 1

)
Since SxOx is diagonal, the squared Hankel singular values are immediately given
by the diagonal elements, implying σ1 =

√
20 and σ2 = 1. You would keep the state

corresponding to the larger singular value, i.e. x1. The error bound is

||y − yr||2
||u||2

≤ 2σ2 = 2

if we reduce the system to first order.

3 a. The static gain matrix is

G(0) =
(

12.8 −18.9
6.6 −19.4

)
from which the RGA in stationarity becomes

G(0) .*G(0)−T =
(

2.0094 −1.0094
−1.0094 2.0094

)

From this we can conclude that we should couple u1 ↔ y1 and u2 ↔ y2. However,
the RGA is far from an identity matrix, so there will be visible interation.
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b. The matrices could for instance be chosen as W1 = I and W2 = G(0)−1.

c. i. False! G̃ is only decoupled in stationarity, so all dynamic behavior will still
give rise to cross-couplings. Also, the outputs of the closed loop system G is
not necessarily decoupled just because the outputs of G̃ are. This we saw in
for instance lab 2, where the tank levels were still coupled, but the sum and
difference of them were decoupled.

ii. False! With the decoupler we do not change the physical process at all, just the
control structure.

iii. False! Fundamental limitations cannot be removed by any controller structure.
iv. True. The decentralized structure means that we design SISO controllers, and

the decoupler takes the MIMO cross-coupling in stationarity into account.

4 a. From the block diagram, setting n = 0, we see that

U = C(R− P (D + U))

Solving for U we obtain

U =
 (I + CP )−1C −(I + CP )−1CP

R

D


b. C(s) must have 3 inputs and 2 outputs, r must be a vector of size 3 and d must be

a vector of size 2.

c. No. The gain of each system is given by the maximum of the largest singular value.
The gain of P is larger than 0.7 and the gain of C is larger than 3. The loop gain is
hence larger than 1 and stability can not be asserted using the Small Gain Theorem.

5 a. The inverse of the maximum sensitivity, 1/Ms, measures the minimum distance be-
tween the Nyquist curve and the critical point −1. Here, Ms ≈ 6, implying that the
robustness is poor. The guaranteed amplitude margin is only Am = Ms

Ms−1 = 1.2.
The plant has a non-minimum-phase (NMP) zero in 2. The rule of thumb for unstable
zeros then says that the bandwidth of the closed-loop system cannot be faster than
2 rad/s (and should not be faster than 1 rad/s to ensure Ms ≤ 2).

b. The Maximum Modulus Theorem implies that the specification ‖WsS‖∞ ≤ 1 is
impossible to fulfill if |Ws(z)| > 1, where z is the location of the NMP zero. We have

|Ws(2)| = 2 +Msω0
2Ms

which is always greater than 1 if ω0 ≥ 2.
With Ms = 1.4 it is impossible to fulfill the specification if

|Ws(2)| = 2 + 1.4ω0
2 · 1.4 > 1 ⇒ ω0 > 0.57
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6 a. We would ideally like to have a noise model which has an infinite amplification for
static signals, i.e. a pure integrator to achieve a true integral action in our LQG
controller. However, the extended model will not be stabilizable (we can’t affect
the noise model integrator state with the control signal) with a pure integrator. To
compute an LQG controller we require that our system model is stabilizable. If we
instead use H = 1

s+δ , the system model is stabilizable since the noise model now is
asymptotically stable.

b. A state space representation of the noise model is:

ẋw(t) = −δxw(t) + n(t)
w(t) = xw(t)

Inserting this into the initial model yields the extended model:[
ẋ(t)
ẋw(t)

]
=
[
A 0
0 −δ

] [
x(t)
xw(t)

]
+
[
B

0

]
u(t) +

[
v1(t)
n(t)

]

z(t) = [C 1 ]
[
x(t)
xw(t)

]

y(t) = [C 1 ]
[
x(t)
xw(t)

]
+ v2(t)

That is

Ae =
[
A 0
0 δ

]
Be =

[
B

0

]
Ce = [C 1 ]

c. The three controllers only differ for low frequencies. With the addition of the noise
model we expect an LQG controller which has a high gain for low frequencies, and
thus controller C can’t be an LQG controller based on the extended model.
With true integral action the controller’s static gain would be infinite. However, we
can’t achieve true integral action with this method, although we can get arbitrarily
close by letting δ approach zero. Thus the controller gain has to level out eventually
for low frequencies, at some large (but not infinite) gain. Since controller B does not
level out, only controller A can be a possible LQG controller based on the extended
model.

7 a. With the given definition of z and u, by analyzing the block diagram we obtain

P =
[
Pzw Pzu

Pyw Pyu

]
=

Pxd Pxn Pxu

Pud Pun Puu

Pyd Pyn Pyu

 =

P0 0 P0

0 0 1
P0 1 P0


where

Pzw =
[
P0 0
0 0

]
, Pzu =

[
P0

1

]
, Pyw = [P0 1 ] , Pyu = P0
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b. The closed-loop system H from w to z is:

H = Pzw − PzuC(1 + PyuC)−1Pyw =
[
P0 0
0 0

]
− C

1 + P0C

[
P0

1

]
[P0 1 ]

=
[ P0

1+P0C
− P0C

1+P0C

− P0C
1+P0C

− C
1+P0C

]

c. Every controller C(s) which stabilizes the system can be parameterized with a stable
transfer function Q(s) as:

C(s) = Q(s)
1−Q(s)P0(s)

We can thus calculate Q(s) for a given controller C(s):

Q(s) = C(s)
1 + P0(s)C(s)

This parametrization results in a closed-loop system which is linear in Q(s). For C1
we get:

Q1(s) = C1(s)
1 + P0(s)C1(s) = s+ 2

s3 + 5s2 + 6s+ 1

and C2:

Q2(s) = C2(s)
1 + P0(s)C2(s) = 2(s+ 2)

s+ 4

d. All of the specifications are convex in Q(s), and either Q1(s) or Q2(s) (parameterizing
C1(s) and C2(s) respectively) fulfills either of the specifications. Thus we can search
for a convex combination of Q1(s) and Q2(s) which fulfills all of the specifications.
One such convex combination is Q3(s) = 0.7Q1(s) + 0.3Q2(s) since it will result in:

max x(t) ≤ 0.7 · 0.44 + 0.3 · 0.25 = 0.383 ≤ 0.4
min u(t) ≥ 0.7 · (−0.14) + 0.3 · (−2.0) = −0.698 ≥ −0.8∥∥∥∥ P0C3

1 + P0C3

∥∥∥∥
∞
≤ 0.7 · 1.0 + 0.7 · 0.5 = 0.85 ≤ 0.95

With this Q3(s) we have the resulting controller

C3(s) = Q3(s)
1−Q3(s)P0

= 0.7Q1 + 0.3Q2
1− (0.7Q1 + 0.3Q2)P0
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