
Department of

AUTOMATIC CONTROL

FRTN10 Multivariable Control

Exam 2016-10-25, 08:00–13:00

Points and grades
All answers must include a clear motivation and a well-formulated answer. Answers may
be given in English or Swedish. The total number of points is 25. The maximum number
of points is specified for each subproblem.

Accepted aid
The textbook Glad & Ljung, standard mathematical tables like TEFYMA, an authorized
“Formelsamling i Reglerteknik”/”Collection of Formulas” and a pocket calculator. Hand-
outs of lecture notes and lecture slides (including markings/notes) are also allowed.

Results
The result of the exam will be entered into LADOK. The result as well as solutions will
be available on the course home page:
http://www.control.lth.se/course/FRTN10
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1. Let

G(s) =


s

s+ 1
−2(s+ 1)
s+ 2

3 1
s+ 2


a. Compute the poles of G(s). Also state their multiplicity. (1 p)

b. Compute the (transmission) zeros of G(s). Do they impose any fundamental perfor-
mance limitations? (1 p)

2. Consider the stable system

ẋ =
(
−1 0
−0.1 −5

)
x+

(
6 2
0 1

)
u

y = Cx

a. Calculate the controllability Gramian Sx of the system. Is the system controllable?
Which state is more difficult to control? (2 p)

b. The observability Gramian of the system is

Ox =
(

1 0
0 10

)

Calculate the Hankel singular values of the system. Which state would you truncate
and how large could the error

||y − yr||2
||u||2

become if we were to keep the static properties of the system, but reduce it to first
order? Here, yr denotes the output signal from the reduced order system. (2 p)

3. A commonly used multivariable model of a distillation column was derived by Wood
and Berry in 1973. The model is

G(s) =


12.8e−s

1 + 16.7s
−18.9e−3s

1 + 21s
6.6e−7s

1 + 10.9s
−19.4e−3s

1 + 14.4s


a. Calculate the Relative Gain Array in stationarity and decide how the input–output

pairing should be done for decentralized control. Will there be visible interaction
between the two control loops? (2 p)

b. Find suitable matrices W1 and W2 such that G̃ = W2GW1 is decoupled in stationar-
ity. (1 p)

c. For each of the four statements below, explain whether it is true or false. (2 p)

i. After the decoupling in subproblem b, there will be no visible cross-coupling in
the closed-loop step responses.

ii. By finding suitable decoupling matrices W1 and W2 we modify our physical
process so that it becomes diagonal.
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iii. The fundamental limitations imposed by the process deadtimes can be removed
by properly chosen decoupling matrices.

iv. The decoupling approach allows us to design SISO controllers while still taking
the MIMO process information into account.
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Figure 1 MIMO control system in Problem 4.

4. Consider the MIMO control system in Figure 1, where P and C are the (matrix)
transfer functions of the process and the controller, respectively.

a. Calculate the (matrix) transfer function from
(
r

d

)
to u in terms of P and C. (1 p)

b. Suppose that P (s) has 2 inputs and 3 outputs. What dimensions must then r, d and
C(s) have? (1 p)

c. The singular value (sigma) plots of P and C are shown in Figure 2. Can stability of
the closed-loop system be guaranteed using the Small Gain Theorem? (1 p)
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Figure 2 Sigma plots in Problem 4c.

5. A young student who has only taken a basic course in control has attempted to design
a controller for the process

P (s) = 2− s
s(s2 + 5s+ 12)

The controller C(s) was designed as a state feedback from an observer. The control
poles were placed in −7 ± i and −8 and the observer poles in −14 ± 2i and −16.
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The student proudly proclaims: “Look at these poles! I have designed a very fast and
well-damped closed-loop system!”.
You become suspicious and ask the student to plot the magnitude of the sensitivity
function S. The result in shown in Figure 3.
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Figure 3 Magnitude plot of the sensitivity function in Problem 5.

a. The student has forgotten all about the sensitivity function and its interpretation.
Explain to him/her why this sensitivity function is a sign of very poor robustness.
Also explain how you could immediately realize that it should not be possible to
design a very fast closed-loop system for this plant. (2 p)

b. Using the sensitivity weighting function

Ws(s) = s+Msω0
Mss

, Ms, ω0 > 0

show that the specification

|S(iω)| ≤ |W−1
s (iω)|, ∀ω

is impossible to fulfill for any value of Ms if ω0 > 2. For what values of ω0 is it
impossible to fulfill Ms ≤ 1.4? (2 p)

6. A controller derived from the standard LQG framework will not automatically fea-
ture integral action. One way of approximating it is to add a noise model to the
Kalman filter where the noise is assumed to have a very high spectral density for low
frequencies. Assuming that the initial model of the system is

ẋ(t) = Ax(t) +Bu(t) + v1(t)
z(t) = Cx(t)
y(t) = Cx(t) + v2(t)

we would like to extend it to

ẋ(t) = Ax(t) +Bu(t) + v1(t)
z(t) = Cx(t) + w(t)
y(t) = Cx(t) + v2(t) + w(t)
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where w is noise with high spectral density for low frequencies. We model w as white
noise n filtered through H(s) = 1

s+δ , i.e.

w = Hn

Here, δ > 0 is some small number.

a. Explain why we do not use a pure integrator, i.e. H(s) = 1
s , in our noise model when

designing an LQG controller. (1 p)

b. Extend the process model with the noise model, such that it attains the form

ẋe(t) = Aexe(t) +Beu(t) + v1e(t)
z(t) = Cexe(t)
y(t) = Cexe(t) + v2(t)

where v1e = [ vT1 n ]T . Express Ae, Be and Ce in A, B and C. (1 p)

c. Now assume that A = −1, B = 1, C = 1 and δ = 0.001. Which one of the three
controllers A, B or C in Figure 4 could be the transfer function of an LQG controller
based on the extended model? You can assume that the low- and high-frequency
asymptotes of the controllers are visible in the plot. (1 p)
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Figure 4 Bode diagram of three possible candidates for the LQG controller in Problem 6.

7. Consider the closed-loop system in Figure 5, where P0 is a SISO system. A controller
should be designed to attenuate the effect of input disturbances d on the process
output x, while keeping the effect of measurement noise n on the control signal u to
a minimum.

a. Define z = [ x u ]T and w = [ d n ]T , and rewrite the system in Figure 5 to the
more general form in Figure 6. Provide the expressions for Pzw, Pzu, Pyw and Pyu.

(1 p)
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Figure 5 Block diagram of the closed-loop system in Problem 7.

b. Determine the closed-loop system from w to z in terms of P0 and C. (1 p)

c. Now assume P0(s) = 1
s+2 . Two controllers, C1(s) = 1

s(s+3) and C2(s) = 2, have been
found to achieve stable closed-loop systems. Determine the Q-parameterization for
each controller, where the parameter Q(s) should be a stable transfer function. The
resulting closed-loop system should be linear in Q(s). (1 p)

d. The response of the closed-loop system is tested for a step input in d and an impulse
in n for each controller. Also, the L2-gain of the closed-loop system is computed for
each case. The results are:

Evaluation C1 C2

Maximum value of x(t) after unit step in d. 0.44 0.25
Minimum value of u(t) after unit impulse in n. −0.14 −2.0
L2-gain of closed-loop transfer function from n to u. 1.0 0.5

Determine a controller which achieves x(t) ≤ 0.4 after a unit step in d and u(t) ≥ −0.8
after an impulse in n. Additionally, the maximum allowable L2-gain of the transfer
function from n to u is 0.95.

Note: You can express your controller in terms of the Q-parameters Q1(s) and
Q2(s) for the controllers C1(s) and C2(s) respectively. (1 p)

[
Pzw(s) Pzu(s)
Pyw(s) Pyu(s)
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Figure 6 General closed-loop system in Problem 7.
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