
Department of

AUTOMATIC CONTROL

FRTN10 Multivariable Control

Exam 2013-10-23

Points and grades

All answers must include a clear motivation and a well-formulated answer. Answers may
be given in English or Swedish. The total number of points is 25. The maximum number
of points is specified for each subproblem.

Accepted aid

The textbook Glad & Ljung, standard mathematical tables like TEFYMA, an authorized
“Formelsamling i Reglerteknik”/”Collection of Formulas” and a pocket calculator. Hand-
outs of lecture notes and lecture slides are also allowed.

Results

The result of the exam will be posted on the notice-board at the Department. The result
as well as solutions will be available on the course home page:
http://www.control.lth.se/Education/EngineeringProgram/FRTN10.html
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1. Consider control of a MIMO system described by the transfer matrix

G(s) =







s − 1

s + 1

9

s + 1
1

s + 2

1

s + 2







.

a. Are there any fundamental limitations due to right half plane poles or zeros in the
system? If so, which? (2 p)

b. Find a state-space realization of the system. (2 p)

Solution

a. The minors of the system are

s − 1

s + 1
,

9

s + 1
,

1

s + 2
,

1

s + 2
, and

s − 1

s + 1
· 1

s + 2
− 9

s + 1
· 1

s + 2
=

s − 10

(s + 1)(s + 2)

The least common denominator of these is

p(s) = (s + 1)(s + 2)

We thus have poles in −1 and −2, both stable.

The maximal minor of the system is the determinant, i.e.
s − 10

(s + 1)(s + 2)
. Hence, the

zero polynomial is s − 10 and the system has a zero at 10.

The unstable zero gives a fundamental limitation on the rate of control. In particular,
the specification

∥
∥
∥[I + G(iω)C(iω)]−1

∥
∥
∥ <

√
2

√

1 + (10/ω)2
for all ω

would be impossible to satisfy with a stabilizing controller.

b. The transfer matrix is

G(s) =







s − 1

s + 1

9

s + 1
1

s + 2

1

s + 2







=







1 − 2

s + 1

9

s + 1
1

s + 2

1

s + 2







=
1

s + 1

[

−2 9

0 0

]

+
1

s + 2

[

0 0

1 1

]

+

[

1 0

0 0

]

=
1

s + 1

[

1

0

]

[ −2 9 ] +
1

s + 2

[

0

1

]

[ 1 1 ] +

[

1 0

0 0

]

A state-space realization of the system is thus

ẋ = Ax + Bu,

y = Cx + Du,
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Figure 1 The system in Problem 3.

where

A =

[

−1 0

0 −2

]

, B =

[

−2 9

1 1

]

,

C =

[

1 0

0 1

]

, D =

[

1 0

0 0

]

.

2. Consider a system described by

[

Y1(s)

Y2(s)

]

=

[ 1
1+s

10s
s+1

10s
s+1

1
1+s

] [

U1(s)

U2(s)

]

We want to use decentralized control to keep y1, y2 at their reference values in spite
of disturbances close to sinusoidal with frequency 0.1 Hz.

Suggest (if possible) a suitable input-output pairing for controlling y1, y2 with two
single-input/single-output controllers. (2 p)

Solution

Calculate the RGA for G(iw) where w = 2πf .

RGA(G(2π0.1i) = RGA

([

0.7170 − 0.4505i 2.8304 + 4.5048i

2.8304 + 4.5048i 0.7170 − 0.4505i

])

=

[

0.025 0.975

0.975 0.025

]

.

We thus see that we should control y1 using u2 and vice versa, and since the corre-
sponding entry in the RGA matrix is very close to 1 we can expect good performance
from this choice.

Solving this problem in Matlab could be done as

s = tf('s')

G = [1/(1+s) 10*s/(s+1); 10*s/(s+1) 1/(1+s)]

f = 0.1

w = 2*pi*f

Gw = evalfr(G,i*w)

RGA = Gw.*(inv(Gw).')

3 a. Consider the set-up in Figure 1. A controller will be designed to make x follow the
reference signal r while limiting the control signal u. Introduce appropriate variables
and rewrite the system on the form given in Figure 2. (2 p)
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[

Pzw(s) Pzu(s)

Pyw(s) Pyu(s)

]

−C(s)

✛ ✛

✛

✲

u

z

y

w

Figure 2 General form of a closed loop system.

b. For the plant P0(s) = 1
s+1 , two controllers C1 = 1

s(s+1) and C2 = 2 have been

designed. Their performance have the following characteristics:

C1 C2

Minimum value of x(t) for t ≥ 5 after a unit step in r 0.94 0.68

Maximum value of u(t) for t ≥ 0 after a unit step in r 1.3 2

H∞ norm of the closed loop transfer function from r to x 1.35 0.67

Design a controller with mint∈[5,∞) x(t) ≥ 0.81 and maxt∈[0,∞) u(t) ≤ 1.65 when r is
a unit step, while the H∞ norm of the closed loop transfer function from r to x is at
most 1.05. (2 p)

Solution

a.
z =

[

x

u

]

=

[

P0d + P0u

u

]

y = x − r = P0d + P0u − r

(

z

y

)

=







0 P0 P0

0 0 1

−1 P0 P0







︸ ︷︷ ︸
[

Pzw(s) Pzu(s)

Pyw(s) Pyu(s)

]







r

d

u







b. The closed loop transfer function from w to z is Pzw + PzuQPyw, where

Q(s) =
C(s)

1 + C(s)Pyu(s)
=

C(s)

1 + C(s)P0(s)
C(s) =

Q(s)

1 − Q(s)P0(s)

The two controllers C1 = 1
s(s+1) and C2 = 2 give

Q1(s) =
s + 1

s3 + 2s2 + s + 1
Q2(s) =

s + 1

s + 3
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respectively. All three specifications are convex in Q(s), so the controller correspond-

ing to Q3(s) = Q1(s)+Q2(s)
2 must satisfy the specifications

min
t∈[5,∞)

x(t) ≥ 0.94 + 0.68

2
= 0.81

max
t∈[0,∞)

u(t) ≤ 1.3 + 2

2
≤ 1.65

∥
∥
∥
∥

P0C3

1 + P0C3

∥
∥
∥
∥

∞
≤ 1.35 + 0.67

2
≤ 1.01

which is good enough. The desired controller is

C3(s) =
Q3(s)

1 − Q3(s)P0(s)
=

Q1(s) + Q2(s)

2 − [Q1(s) + Q2(s)]P0(s)

=
2s3 + 4s2 + 3s + 5

2s3 + 6s2 + 4s + 1

4. Consider the system in Figure 3.

K
1

s + 4

v
∆

n

+

2s

s + 4

−1

P (s)C(s)

Figure 3 System for Problem 4.

Let the controller be a given by a static feedback gain K.

a. For what values of K is the closed loop system stable when ∆ = 0. (1 p)

b. What values of K keeps the closed loop system stable for every (stable) ∆ with gain
less than one? (2 p)

Solution

a. The closed loop transfer function

K/(s + 4)

1 + K/(s + 4)
=

K

s + 4 + K

is stable if and only if K > −4.
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b. The transfer function from n to v is

G(s) =
K/(s + 4)

1 + K/(s + 4)
· 2s

s + 4
=

2Ks

(s + 4 + K)(s + 4)

Hence for K > −4 (where G is stable)

|G|∞ = max
ω

∣
∣
∣
∣

2Kiω

16 + 4K − ω2 + (8 + K)iω

∣
∣
∣
∣

= max
ω

2ω|K|
√

(16 + 4K − ω2)2 + ω2(8 + K)2

= max
ω

2|K|
√

(16+4K
ω2 − 1)2 + (8 + K)2

=

∣
∣
∣
∣

2K

8 + K

∣
∣
∣
∣

According to the small gain theorem, the closed loop system is stable for every ∆
with gain less than one provided that | 2K

8+K
| < 1. Equivalently

{
2K ≤ 8 + K

−2K ≤ 8 + K

or

−8

3
≤ K ≤ 8

5. Consider the system

ẋ =

[

1 −1

0 1

]

x +

[

0

1

]

u + v,

y = [ 1 1 ] x + e,

Φe ≡ 1, Φv ≡
[

2 0

0 1

]

We want to control the system using LQG, where the cost function to minimize is

E

[

yT Qy + uT Ru
]

, Q = 10, R = 1

a. Determine the vector L in the feedback law u = −Lx̂. (3 p)

b. Determine the vector K in the Kalman filter equation

˙̂x = Ax + Bu + K(y − Cx)

Assume that e, v are uncorrelated white noise processes. (2 p)

Solution
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a. We need to solve

yT Qy = xT CT QCx =⇒

Q1 = CT QC =

[

10 10

10 10

]

R = 1

0 = AT S + SA + Q1 − SBR−1BT S

L = R−1BT S

=⇒ s1 =
s2

12

2
− 5

s12 = s21 = −s2
2

2
+ s2 + 5

0 = 2s2 − (− s2

2

2 + s2 + 5)2

2
− s2

2 − s2(−s2
2

2
+ s2 + 5) + 25

The last equations has two real roots, which can be found by e.g plotting the graph.
Since we need s2 > 0 for S to be positive definite only the root in s2 = 6.9806 is
possible.

S =

[

71.7 −12.4

−12.4 7.0

]

=⇒ L = [ −12.7 7.0 ]

b.

E = 1

V =

[

2 0

0 1

]

0 = AP + PAT + V − PCT E−1PCT

K = PCT E−1

=⇒ 0 =







2p1 − 2p12 − p1(p1 + p12) − p12(p1 + p12) + 2

2p12 − p2 − p1(p2 + p12) − p12(p2 + p12)

2p2 − p2(p2 + p12) − p12(p2 + p12) + 1

=⇒ p2 =
2p12 − p12(p1 + p12)

p1 + p12 + 1

p1 = 1 − p12 ±
√

3 − 4p12

0 =







18p12 + 6p12
√

3 − 4p12 − 12p2
12

√
3 − 4p12 − 15p2

12 + 4p3
12 + 1

(4p12 + 1)2
, p

(+)
1

18p12 − 6p12
√

3 − 4p12 + 12p2
12

√
3 − 4p12 − 15p2

12 + 4p3
12 + 1

(4p12 + 1)2
, p

(−)
1

We have two possible equations for p12 depending on which relation holds for p1. We
can immediately see that p12 ≤ 0.75 for the solution to be real. Solving the equations
numerically by eg plotting shows that only one case gives a real solution for p12 and
that is p12 = −29.84

P =

[

41.0 −29.8

−29.8 23.0

]

=⇒ K =

[

12.1

−6.9

]

Solving this problem in Matlab could be done as
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A=[1 −1; 0 1]

B=[0; 1]

C=[1 1]

R=1

Q=10

Qexp=C'*Q'*C

% LQ design

S=care(A, B, Qexp, R, zeros(2,1), eye(2))

L=inv(R)*B'*S

V = diag([2 1])

E = 1

% Kalman filter design

P=care(A', C', V, E, zeros(2,1), eye(2))

K = P*C'*inv(E)

6. Consider the system

ẋ =

[

−1 0.1

0 0.1

]

x +

[

0

1

]

u + v

y = [ 1 0 ] x + e

Assume that v, e are uncorrelated and white.

I. Intensity of e = 1. Intensity of v =

[

1 0

0 1

]

.

II. Intensity of e = 1. Intensity of v =

[

10 0

0 1

]

.

III. Intensity of e = 100. Intensity of v =

[

1 0

0 1

]

.

IV. Intensity of e = 0.1. Intensity of v =

[

1 0

0 1

]

.

a. Pair the noise models I-IV with the corresponding (noise free) initial state conver-
gence for the Kalman filters in plots A-D in Figure 4 (1 p)

b. In which case is the Kalman-filter most sensitive to modelling errors in the system
dynamics? (1 p)

c. In which case is the Kalman-filter estimate most sensitive to measurement outliers
(measurements were our noise-model isn’t correct) (1 p)

Solution

a.IV-D This has the quickest convergence since there is little measurement noise

III-C This has the slowest convergence due to the large uncertainty in the measure-
ments

II-B Compared to A the x1 state converges quicker, which is due to the process model
saying this state is more uncertain, and therefore the measurements influence it
more than the x2 state

I-A Same reasoning as for II-B

8



0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

A

 

 

x1

x2

x1
est

x2
est

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

B

 

 

x1

x2

x1
est

x2
est

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

C

 

 

x1

x2

x1
est

x2
est

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

D

 

 

x1

x2

x1
est

x2
est

Figure 4 Initial state convergence of different Kalman filters for problem 6

b. Case III, since the filter doesn’t put as much trust in the measurement it is of greater
importance to have a correct model for the system behavior

c. Case IV, since the Kalman filter puts more trust in the measurement it is more
sensitive to outliers

7. Consider the system

[

ẋ1

ẋ2

]

=

[

−1 0

0 −2

] [

x1

x2

]

+

[

1 0

0 0.1

]

u,

y =

[

0.1 0

0 10

] [

x1

x2

]

a. Is the system controllable and/or observable? (1 p)

b. Determine the Hankel singular values. (1 p)

c. Find a balanced realization. (1 p)
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d. Find a first order approximative model using balanced truncation. (1 p)

Solution

a. The system consists of two independent SISO systems which are controllable and
observable. The same is therefore true also for the MIMO system. Alternatively, this
can be seen from the controllabilty Gramian and the observability Gramian to be
computed in b, which both have full rank.

b. We find the controllabilty Gramian by solving the following equation

0 = AS + SAT + BBT =

[

−s1 − s1 + 1 0

0 −2s2 − 2s2 + 0.12

]

=⇒ S =

[

0.5 0

0 0.0025

]

Similarly we find the observability Gramian by

0 = AT O + OA + CT C =

[

−o1 − o1 + 0.12 0

0 −2o2 − 2o2 + 102

]

=⇒ O =

[

0.005 0

0 25

]

The hankel singular values are the square roots of the eigenvalues of SO =

[

0.0025 0

0 0.0625

]

=⇒

[ 0.05 0.25 ]

c. We are looking for a transformation T such that T −T OT −1 = TST T . Since the
Gramians are diagonal we attempt to find a diagonal transformation. o1/t2

1 = 0.05 =
s1t2

1, o2/t2
2 = 0.25 = s2t2

2. We thus choose t2
1 = o1/0.05 = 0.1 = 0.05/s1, t2

2 =
o2/0.25 = 100 = 0.25/s2

T =

[
1√
10

0

0 10

]

, ζ = Tx =⇒

Aζ = TAT −1 = A

Bζ = TB =

[
1√
10

0

0 1

]

Cζ = CT −1 =

[
1√
10

0

0 1

]

Since the system consisted of two SISO systems this answer was also immediately
obvious, the A-matrix won’t change but the static gain in the system is evenly dis-
tributed between the B and C matrix.

d. We discard the first state, since it has the smallest Hankel singular value. Since there
are no cross terms the reduced system simply becomes

ζ̇2 = −2ζ2 + [ 0 1 ] u

y =

[

0

1

]

ζ2 +

[

0.1 0

0 0

]

u

The direct term is a result from that we calculate the value of ζ1 in stationarity and
calculate y1 using that.
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