
1.

a. Start by determining the transfer function matrix of the system

G(s) = C(sI − A)−1B + D =



10 c

10 0









1

(s+ 10) 0

0
1

(s+ 1)





+



0 0

0 1





=





10

(s+ 10)
c

(s+ 1)
10

(s+ 10) 1





The zero polynomial is the numerator of detG(s) when the denominator is
the pole polynomial. We have that

detG(s) = 10 (s+ 1− c)
(s+ 10)(s + 1) .

Therefore the zero is located in s = c − 1 and thus we have a right half
plane zero if and only if c > 1.

b. The observability matrix is

Wo =








10 c

10 0

−100 −c
−100 0








which has full rank, i.e., 2, for c ,= 0. Thus, we have observability only when
c ,= 0.

c. The controllability gramian is determined by solving

AS+ SAT + BBT = 0

which gives the following equations, when using S =
(
s1 s2

s2 s3

)

,

−20s1 + 1 = 0
−11s2 = 0

−2s3 + 1 = 0

which gives

S =
(
0.05 0

0 0.5

)

2.
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a. From lecture 6, the transfer matrix
∑n
i=1

CiBi
s−pi + D has the realization

ẋ(t) =






p1I 0

. . .

0 pn I




 x(t) +






B1
...

Bn




u(t)

y(t) = [C1 . . . Cn ] x(t) + Du(t)

Hence

G(s) =


 2
s2+3s+2

1
s+1



 =


 2
s+1 − 2

s+2
1
s+1





= 1

s+ 1


 2 1





︸ ︷︷ ︸

B1

+ 1

s+ 2


−2 0





︸ ︷︷ ︸

B2

with p1 = −1, p2 = −2 and C1 = C2 = 1 gives

ẋ =



−1 0

0 −2



 x +



2 1

−2 0



u = Ax + Bu

y= ( 1 1 ) x = Cx

b.

Φd(ω ) =
∣
∣
∣
∣

1

(ω 2 + 1)(ω 2 + 4)

∣
∣
∣
∣

=
∣
∣
∣
∣

1

(iω + 1)(−iω + 1)(iω + 2)(−iω + 2)

∣
∣
∣
∣

=
∣
∣
∣
∣

1

(iω + 1)(iω + 2) ⋅
1

(−iω + 1)(−iω + 2)

∣
∣
∣
∣

= pH(iω )H(−iω )p [

H(s) = 1

(s+ 1)(s+ 2) =
1

s2 + 3s+ 2

c. The Laplace transform of the disturbance signal d can be written as D(s) =
1

s2+3s+2W(s) where w is white noise. By introducing the states xd1 = d and
xd2 = ḋ we can write the noise model in state space form as

ẋd =
(
ẋd1

ẋd2

)

=
(
0 1

−2 −3

)

︸ ︷︷ ︸

Ad

xd +
(
0

1

)

︸ ︷︷ ︸

Bd

w

Extending the state space model from a. with the new noise states and by

rewriting the B matrix as B = ( B1 B2 ) gives
(
ẋ

ẋd

)

=
(
A [ B2 02$1 ]
02$2 Ad

)(
x

xd

)

+
(
B1 02$1
02$1 Bd

)(
u

w

)
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3.

a. The small gain theorem guarantees stability if

pp∆pp∞ ⋅ ppGunpp∞ < 1,

where Gun is the transfer function from the output of ∆ to the control signal
(which is also the input of ∆). Note that the two transfer function must be
input-output stable. We have that

Gun =
−KW
1+ KP =

−sK
s+ 3+ 3K

and is input-output stable if K > −1. We see that qGunq∞ ≤ K and q∆q∞ <
1, so any K satisfying −1 ≤ K ≤ 1 is ok.

b. The given weighting factor W(s) tends to 0 for low frequencies since

lim
ω→0

ω 2

ω 2 + 32 = 0

This means that also ∆(s)W(s) tends to 0 since q∆q∞ < 1. Hence, for low
frequencies there is no uncertainty in the process model. Looking at the two

plots we see that the left plot shows uncertainties at low frequencies while

the right one does not, the dotted lines tend to the process model. Thus,

plot B illustrates the uncertainty of the process with given W(s).

4.

a. Given that

Q(s) = G−1(s)
(λs+ 1)2 =

(s+ 1)(100s + 1)
(λs+ 1)2 ,

the controller can be derived using the formula

C(s) = Q(s)
1− Q(s)G(s) =

(s+ 1)(100s+ 1)
λs(λs+ 2) .

The complementary sensitivity function is given by (see the book)

T(s) = G(s)C(s)
1+ G(s)C(s) = G(s)Q(s) =

1

(λs+ 1)2

The slowest pole in the process is −1/100, hence we should choose λ = 1
which gives −1 as slowest pole in the closed loop system. The corresponding
controller becomes

C(s) = (s+ 1)(100s + 1)
s(s+ 2)

b. The closed loop transfer function from d to y is

G(s)
1+ G(s)C(s) =

λs(λs+ 2)
(λs+ 1)2(s+ 1)(100s + 1)

and here the slow process pole will be visible no matter how small λ is
made. The reason why this does not show in the transfer function from r to

y is that the controller cancels out the slow pole.
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5.

a. The Riccati equation

0 = Q1 + ATS+ SA− (SB + Q12)Q−12 (SB + Q12)T

with A = −1, B = 1, Q1 = 2, Q12 = 0, Q2 = 1 becomes

0 = 2− 2S− S2 = 3− (S+ 1)2

which gives the positive semidefinite solution

S = −1+
√
3

and L = S. Hence the optimal state feedback is

u = (1−
√
3)x

b. For the Kalman filter we have the Riccati equation

0 = R1 + AP + PAT − (PCT + R12)R−12 (PCT + R12)T

and C = R1 = R2 = 1, R12 = 0 gives

0 = 1− 2P − P2 = 2− (P + 1)2

with the solution P = −1+
√
2 and Kalman filter gain K = PCT = −1+

√
2.

Thus, the controller is

˙̂x(t) = −x̂(t) + u(t) + (−1+
√
2)(y(t) − Cx̂(t))

u(t) = (1−
√
3)x(t)

c. For the system in a. the poles are given by the eigenvalues of A − BL. In
this case there will be a single pole in s = −

√
3. The system in b. has an

additional pole from the observer given by the eigenvalues of A− KC. This
pole is located in s = −

√
2.

d. Minimization of

E
(

y(t)2 +ψu(t)2
)

=ψE

(
1

ψ
y(t)2 + u(t)2

)

is the same as minimization of

E

(
1

ψ
y(t)2 + u(t)2

)

Hence, using ψ = 1
2
will give the same control law as before.
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6.

a. With bold face indicating Laplace transform, we have

(
z

y

)

=






y

ū

y




 =







W2w2 + P0(W1w1 + u)
W1w1 + u

W2w2 + P0(W1w1 + u)







=






P0W1 W2 P0

W1 0 1

P0W1 W2 P0












w1

w2

u






=




Pzw(s) Pzu(s)
Pyw(s) Pyu(s)





(
w

u

)

,

such that Pzw is a 2$ 2 matrix, Pzu is 2$ 1, Pyw 1$ 2 and Pyu 1$ 1.

b. The closed loop transfer function matrix Hzw2 from w2 to z can be determi-

ned using that

Hzw = Pzw − PzuC(1+ PyuC)−1Pyw,
which is the transfer function from w to y. We have that

Hzw =



P0W1 W2

W1 0



−



P0

1




C

1+ P0C


 P0W1 W2





=



P0W1 W2

W1 0



− C

1+ P0C




P20W1 P0W2

P0W1 W2



 =





P0W1

1+ P0C
W2

1+ P0C
W1

1+ P0C
−CW2
1+ P0C





.

Then, Hzw2 is the second column of Hzw, i.e.,

Hzw2 = Hzw



0

1



 =





W2

1+ P0C
−CW2
1+ P0C





.

c. Since we want the sensitivity S(s) to be small for low frequencies (as v is a
low frequency disturbance), we can for instance choose

W2(s) = K
sT + 1
s

which has high gain at low frequencies. K changes the weight over all

frequencies while T determines the cut-off frequency.

2013-01-10 20:30 5


