
Department of

AUTOMATIC CONTROL

FRTN10 Multivariable Control

Exam 2016-05-13

Grading

All answers must include a clear motivation and a well-formulated answer. Answers
may be given in English or Swedish. The total number of points is 25. The maximum
number of points is specified for each subproblem. In several cases the subproblems
can be solved independently.

Accepted aid

The textbook Glad & Ljung, standard mathematical tables like TEFYMA, an au-
thorized “Formelsamling i Reglerteknik”/”Collection of Formulas” and a pocket cal-
culator. Handouts of lecture notes and lecture slides are also allowed.

Results

The results will be reported via LADOK.
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1. A system with one input u and two outputs y1, y2 is given by

{

ẏ1 + y1 + 2y2 = u̇ + 3u

ẏ2 + 4y1 = u

a. Find the system transfer matrix. (2 p)

b. Find a system state-space representation. (1 p)

Solution

a. Introduce

y =

[

y1

y2

]

This gives
ẏ + a1y = b1u̇ + b2u,

with

a1 =

(

1 2

4 0

)

, b1 =

(

1

0

)

, b2 =

(

3

1

)

Laplace transformation gives

(sI + a1)Y (s) = (sb1 + b2)U(s).

We get
Y (s) = (sI + a1)−1(sb1 + b2)U(s)

that is,

G(s) =

(
s2+3s−2

s2+s−8

−3s−11

s2+s−8

)

=

(
2s+6

s2+s−8
+ 1

−3s−11

s2+s−8

)

.

b. A state space representation could be given on the controllable canonical form,
as

ẋ(t) =

(

−1 8

1 0

)

x(t) +

(

1

0

)

u(t),

y(t) =

(

2 6

−3 −11

)

x(t) +

(

1

0

)

u(t).

2. You want to design a controller for the process

P (s) =
s − 1

(s − 5)(s + 2)
.

An objective of the control design is to keep down the magnitude of the sen-
sitivity function S(s). A frequency-dependent upper bound on the magnitude
of the sensitivity function has been specified as

|S(iω)| ≤ |F (iω)|, ∀ω

where

F (s) =
2s

s + 2
.
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a. Find a weighting function W (s) such that the constraint can be formulated as

sup
ω

|W (iω)S(iω)| ≤ 1.

(1 p)

b. Is it possible to find a stabilizing controller that satisfies the constraint? (1 p)

Solution

a. The constraint can be rewritten as

|S(iω)F −1(iω)| ≤ 1 ∀ω

i.e.
sup

ω
|F −1(iω)S(iω)| ≤ 1

so we have W (s) = F −1(s) = s+2

2s
.

b. A constraint of the type

sup
ω

|Wa(iω)S(iω)| ≤ 1

where Wa(s) = s+a
2s

is impossible to satisfy unless |Wa(z)| ≤ 1 for all RHP
zeros s = z of the process, i.e. a ≤ z for all such zeros. This comes from the
fact that

S(z) =
1

1 + P (z)C(z)
= 1

since
P (z) = 0.

Here we have a = 2, and there is an RHP zero at s = 1. Therefore, it is not
possible to satisfy the constraint on S(s) with any stabilizing controller.

3. In the first lab of this course, you designed a controller for the mass-spring
process whose Bode diagram is shown in Figure 1. Figure 2 shows the Bode
diagrams of the open loop L(s) = P (s)C(s) for six different controllers C1(s) to
C6(s). Figure 3 shows the results from using the six controllers on the process.
In these simulations the process is originally at rest. At time t = 5 s the
reference value is changed to r = 1. At time t = 30 s, a load disturbance in the
form of a step is applied to the process.

Pair the six step responses A to F to the six controllers 1 to 6. You must
motivate your answers. (3 p)

Solution

a. Step responses A and B have static errors in the load disturbance response,
which is caused by not having an integrator in the controller. If there is no
integrator, the low-frequency phase of L(s) should be the same as that for
P (s), i.e., −90◦ as in controllers 2 and 6. Step response B is faster than A,
which corresponds to a higher cross-over frequency as for controller 6.
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Figure 1 The Bode diagram of the mass-spring process in Problem 3.

Thus, B → 6, A → 2.

Step response D is unstable, which corresponds to a negative phase margin. The
phase of the open-loop system for controller 1 is below −180◦ at the cross-over
frequency, so the closed-loop system cannot be stable.

Thus, D → 1.

Step response F has a slow response to the load disturbance, which corresponds
to a small low-frequency gain. Of the remaining controllers 3, 4, 5, the low-
frequency gain is smallest for controller 5.

Thus, F → 5.

The remaining controllers 3 and 4 have cross-over frequencies at approximately
ωc3 = 2.5 and ωc4 = 5.5. Higher cross-over frequency gives a faster response, so
controller 4 corresponds to step response E and controller 3 to step response
C.

Thus, E → 4, C → 3.

4. In diesel engines, it is important to keep emissions of soot and oxides of Ni-
trogen low. Experiments have shown that emissions can be predicted from
two measured signals: the combustion phasing y1 and the ignition delay y2. A
weighted sum of emissions can be approximated by a quadratic cost function
Jy = y(t)T Qyy(t) with level curves shown in Figure 4.

a. Two different simulations of the engine are shown in Figure 5. Which of the
two cases would correspond to lower emissions? (1 p)

b. We can control the system using two control signals: the start of injection angle
u1 and the exhaust gas recirculation valve position u2. To minimize emissions
we want to minimize the cost function

J =

∫
∞

0

(yT Qyy + uT Quu)dt
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Figure 2 The Bode diagrams of the the open-loop system L(s) = P (s)C(s) using six
different controllers in Problem 3.

where Qy =

(

6 20

20 100

)

and Qu =

(

1 0

0 1

)

.
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Figure 3 The step responses of the closed-loop system using the six controllers in Prob-
lem 3. At t = 5 s, the reference value is changed. At t = 30 s, a load disturbance enters the
system.

A continuous-time model of the engine dynamics is given by

ẋ =

(

−33 −31

31 −33

)

x +

(

2 0.08

−2 −0.08

)

u

y =

(

16 1

−2 0

)

x
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Figure 4 Level curves of Jy = y(t)T Qyy(t) in Problem 4.
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Figure 5 Results of two simulations of the engine, Problem 4.

The optimal control law assuming full state feedback is u = −Lx. Give the
equations that are needed to compute the optimal feedback matrix L. Define
all variables included in the equations. You do not need to solve the equations.

(2 p)

Solution

a. In the first simulation, y1 and y2 are close to the point (3, 1), and in the second
simulation to (4, −1). Relating these points to the level curve plot, we see
that (4, −1) corresponds to a lower cost. Thus, simulation 2 results in lower
emissions.

b. The system is given on the form

ẋ = Ax + Bu

y = Cx

and the cost function can be rewritten as

J =

∫
∞

0

yT Qyy + uT Quudt =

∫
∞

0

xT CT QyC
︸ ︷︷ ︸

Q1

x + uT Qu
︸︷︷︸

Q2

udt.
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The optimal feedback gain L is found by finding the positive definite solution
S to the Riccati equation

AT S + SA + CT QyC − SBQ−1
u BT S = 0

and computing L as
L = Q−1

u BT S.
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5. A system is given by

ẋ = −x + u + v1

where v1 is white noise with intensity R1 = 10.

a. We use a sensor to measure the state x, but unfortunately the measurement
noise cannot be neglected so we have the measurement equation

y = x + v2

where v2 is white noise with intensity R2 = 1, uncorrelated to v1. We decide
to use a Kalman filter

˙̂x = Ax̂ + Bu + K(y − Cx̂)

to get an estimate x̂ of the state x from the noisy measurements y. Determine
the optimal filter gain K, and the steady-state variance of the estimation error
x̃ = x − x̂. (2 p)

b. We conclude that the estimation error variance found in (a) is too large. We
come up with two options to solve the problem

1. Get a better sensor. This sensor costs 1000 SEK and gives intensity R2 =
0.5 of the measurement noise.

2. Use a combination of two sensors of the original type. These sensors cost
100 SEK each. You can assume that measurement noise from the two
sensors is uncorrelated.

Show how you can use a Kalman filter to estimate x from measurements y1

and y2 from the two sensors in the second option. (2 p)

c. Compute the variance of the estimation error for the two options in b). Deter-
mine the best option. (2 p)

Solution

a. The optimal filter gain K is given by

K = (PCT + NR12)R−1
2

where P is the positive definite solution to the Riccati equation

AP + PAT − (PCT + NR12)R−1
2 (PCT + NR12)T + NR1NT = 0.

We have A = −1, C = 1, N = 1, R1 = 10, R2 = 1, R12 = 0, which gives the
equation in P

P 2 + 2P − 10 = 0

with solutions
P = −1 ±

√
11

with the unique positive solution P = −1 +
√

11 ≈ 2.32.

Thus, K = P = 2.32. The variance of the estimation error for the optimal
Kalman filter is equal to P , so var(x̃) = 2.32.
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b. With y =

(

y1

y2

)

, the system can be written as

ẋ = −x + u + v1

y =

(

1

1

)

+

(

v21

v22

)

The difference from the system in (a) is that C =

(

1

1

)

, R2 =

(

1 0

0 1

)

. A

standard Kalman filter can be used to estimate x from y, and the optimal gain
K is computed as in (a) with the modified C and R2 matrices.

c. Option 1:

With R2 = 0.5, the Riccati equation in P becomes

P 2/0.5 + 2P − 10 = 0,

which gives P1 = 1.79.

Option 2:

With C =

(

1

1

)

, R2 =

(

1 0

0 1

)

, the Riccati equation in P becomes

2P 2 + 2P − 10 = 0,

which is the same equation as in Option 1, thus giving P2 = P1 = 1.79.

Since the estimation error variance is equal to P it is the same for the two
options. Option 2 is much cheaper than option 1 and is probably the best
choice.

6. We want to design a controller C for the SISO control loop in Figure 6 using
Youla parametrization and convex optimization. To do this, the control loop
must first be transformed into the standard form of Figure 7, where z are the
signals that we want to control, y are the signals available to the controller, w
are the exogenous inputs and u is the control signal.

P0 CΣ Σ

n

y0 x

d

u
r

Figure 6 The control loop in problem 6

The signals z and w are given by

z =

(

e

u

)

, w =






d

n

r




 ,

where the control error is e = r − x. The controller C, which is a 1 × 2 transfer
function, is the same in both figures, as is the control signal u.
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Figure 7 Desired form of the control loop in problem 6

a. What is the controller input y of Figure 7 according to Figure 6?

What is the size of the transfer function matrix P?

(1 p)

b. Find the transfer function matrix P so that Figure 7 and Figure 6 describe the
same control problem. (2 p)

c. The Youla parametrization results in the closed loop system

z = Hw

where the transfer function H is given by

H = Pzw + PzuQPyw.

The control objective is

a) To make the L2-gain ||Hij ||2 ≤ 10 for all elements Hij .

b) During an impulse disturbance experiment in d, the control signal should
satisfy |u(t)| ≤ 1.

c) During an impulse disturbance experiment in d, from two seconds onward
the control error should be small: |e(t)| ≤ 0.75, t ≥ 2 if the impulse occurs
at t = 0.

Two transfer functions Q1 and Q2 have been found that satisfy objective a).
Figure 8 shows impulse responses from d to e and u when using the corre-
sponding controllers C1 and C2. Find a Q that satisfies all three objectives
a),b),c). (2 p)

Solution

a. The inputs to the controller are r and y0, i.e.

y =

(

r

y0

)

.

The input to P is

(

w

u

)

, which contains 4 signals, and the output is

(

z

y

)

,

which contains 4 signals as well. Thus P must be 4 × 4.
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Figure 8 Impulse responses from disturbance d to control error e (top) and control signal
u (bottom) for the controllers C1 and C2 in problem 6

b. We know that

(

z

y

)

=









e

u

r

y0









,

(

w

u

)

=









d

n

r

u









.

The block diagram gives that

e = r − x = r − P0(d + u),

u = u,

r = r,

y0 = n + P0(d + u).

Arranging this into matrix form gives the answer:

P =









−P0 0 1 −P0

0 0 0 1

0 0 1 0

P0 1 0 P0









.

c. The control objective a) is convex in H, and H is a linear function of Q, so
the control objective a) is convex in Q. Since it is satisfied for Q1 and Q2, it is
thus satisfied for any convex combination

Q = wQ1 + (1 − w)Q2, w ∈ [0, 1].

We see from the impulse responses that neither Q1 nor Q2 satisfies b) or c).
However, a convex combination of Q1 and Q2 will give the same convex com-
bination of the disturbance responses. Taking e.g. w = 0.7,
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• The control signal satisfies |u(t)| ≤ 0.7·0.4+0.3·2 = 0.88, since |u(t)| ≤ 0.4
with C1 and |u(t)| ≤ 2 with C2.

• When t ≥ 2, the control error satisfies |e(t)| ≤ 0.7 · 1 + 0.3 · 0.1 = 0.73,
since |e(t)| ≤ 1 with C1 and |e(t)| ≤ 0.1 with C2.

Thus we can use Q = 0.7Q1 + 0.3Q2.

7. Consider the control system in the block diagram in Figure 9. The process P (s)
is modeled to have an unstructured uncertainty ∆.

P(s)C(s)

-1

∆
s

s+a
____

++
r y

Figure 9 Block diagram for the system in problem 7.

a. Explain the role of the transfer function s
s+a

(a > 0) in the block diagram.
(1 p)

b. Give an expression for γ∗ such that stability of the closed loop system is guar-
anteed by the small gain theorem if and only if ‖∆‖∞ < γ∗. Assume that the
nominal system (i.e., with ∆ = 0) is asymptotically stable. (2 p)

Solution

a. It is a weighting function giving the unstructured uncertainty some structure.
In this case it says that the uncertainty is small for low frequencies, less than
a, and large for high frequencies.

b. By calling the input to the uncertainty block v1 and the output from it v2, the
system can be rewritten according to Figure 10. To derive G(s), first calculate
Y (s):

Y (s) = P (s)(V2 − C(s)Y (s))

⇒ Y (s) =
P (s)

1 + C(s)P (s)
V2(s)

Now V1(s) is given by

V1(s) =
s

s + a
Y (s) =

P (s) s
s+a

1 + C(s)P (s)
V2(s)

and the transfer function G(s) is hence given by

G(s) =
P (s) s

s+a

1 + C(s)P (s)

The closed loop system is stable according to the small gain theorem if and
only if ‖∆‖ < γ∗ where γ∗ = ‖G(iω)‖−1

∞
.
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Figure 10 Equivalent block diagram for the system in problem 7.
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