
FRTN10 Exercise 1. Control Basics

If you master the basic control systems theory, including LTI system representations,

Bode diagrams, block diagrams, and stability, you can skip straight to Problem 1.9.

LTI System Representations

1.1 For each of the linear, time-invariant systems below,

• find the transfer function G(s).
• calculate the poles and zeros of G(s).
• determine whether the system is (asymptotically) stable. If so, calculate

the static gain of the system.

• introduce state variables x and write the system in state-space form.

a. T ẏ(t) + y(t) = u(t)

b. ÿ(t) + 2ẏ(t) + 4y(t) = u̇(t)

c. ÿ(t) + 3ẏ(t) = u(t− 2)

1.2 Figure 1.1 shows the step response of four linear systems A–D. Give the

structure of the corresponding transfer function GA(s)–GD(s). For first-order

systems, you should write down the exact transfer function, including the

values of all coefficients.

Bode Diagrams

1.3 A lag filter has the Bode diagram shown in Figure 1.2.

a. How much are input signals of frequencies 0, 10, and ∞ rad/s amplified,

respectively?

b. Estimate the output y(t) if the input is u(t) = 0.5 sin
(

100t− π
2

)

, −∞ < t <
∞.

c. Estimate the transfer function G(s) of the system.

1.4 Sketch the Bode diagram (amplitude and phase) of the following systems:

a. G(s) = 1

1+ sT
, T > 0 (a low-pass filter)

b. G(s) = K
(

1+ 1

sTi

)

, K, Ti > 0 (a PI controller)

c. G(s) = N(s+ b)
s+ bN

, b > 0, N > 1 (a lead filter)

Block Diagrams

1.5 Given the block diagram in Figure 1.3, calculate
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Figure 1.1 Step responses of four linear systems.

a. the transfer function Gyr(s).

b. the transfer function Gvw(s).

1.6 Given the block diagram in Figure 1.4, calculate

a. the transfer function Gyry
(s).

b. the transfer function Gu1ru1
(s).

Stability

1.7 Determine whether the following systems are stable or unstable.

a. ẋ =
[

0 1

−2 −3

]

x

b. ẋ =





−1 0 0

3 −2 0

7 −3 3



 x

c. G(s) = s− 1

s2 + 1.3s+ 4.7

d. G(s) = 1

s4 − 2s3 + 5s2 + 6s+ 1
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Figure 1.2 Bode diagram
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Figure 1.3 Block diagram in Problem 1.5.
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Figure 1.4 Block diagram in Problem 1.6.
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Figure 1.6 Bode diagram

1.8 Consider the simple feedback loop in Figure 1.5, where

G0(s) =
10

(s+ 1)(s+ 2)(s+ 3)

and K > 0.

a. For what values of K is the closed loop stable? Use direct calculation of the

closed-loop characteristic polynomial.

b. For what values of K is the closed loop stable? Use the Nyquist theorem and

the Bode diagram of G0(s) in Figure 1.6.

Multivariable LTI System Representations

1.9 Consider the multivariable process in Figure 1.7.

a. Find the transfer matrix of the process.

b. Introduce state variables and write the system in state-space form.
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Figure 1.7 System in Problem 1.9

1.10 A system is given by

ẋ1 = −2x1 + x2 + u1

ẋ2 = −3x2 + u1 + 2u2

y1 = x1 + x2

y2 = 2x1 + u1

y3 = 2x2 + u2

a. Find the system matrices A, B, C, and D.

b. Calculate the transfer matrix G(s).

1.11 A system with two inputs and one output is modeled by the differential

equation

ÿ+ a1 ẏ+ a2 y = b11u̇1 + b12u1 + b21u̇2 + b22u2.

a. Find the transfer matrix.

b. (*) Express the system in state-space form.
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Solutions to Exercise 1. Control Basics

1.1 a. Taking the Laplace transform of the differential equation (ẋ(t) \ sX(s) if

ignoring initial values), we obtain

TsY (s) + Y (s) = U(s) \ Y (s) = 1

1+ sT
︸ ︷︷ ︸

=G(s)

U(s)

The poles p are the roots of the denominator polynomial, p = −1/T in this

case. The zeros z are the roots of the numerator polymial, none in this case.

The system is stable if and only if (iff) all poles are in the left half-plane

(LHP). In this case the system is stable iff T ≥ 0.

If T ≥ 0 then the static gain is given by G(0) = 1.

Introducing (for instance) x = y, we can write the system as

ẋ = − 1

T
x+ 1

T
u

y = x

b.

s2Y (s) + 2sY (s) + 4Y (s) = sU(s) \ Y (s) = s

s2 + 2s+ 4
︸ ︷︷ ︸

=G(s)

U(s)

There are two poles, p1,2 = −1± i
√

3 and one zero, z = 0.

The system is stable since the poles are in the LHP. This can also be seen

directly from the numerator polynomial, where all coefficients are positive

(both sufficient and necessary condition for second-order polynomials).

The static gain is G(0) = 0.

Since the system has a zero, the simplest choice x1 = y, x2 = ẏ does not work.

Instead we can use one of the canonical forms, for instance the controllable

canonical form (see the Collection of Formulae), yielding

ẋ1 = x2

ẋ2 = −4x1 − 2x2 + u

y = x2

c. Taking the Laplace transform of the time delay
(

x(t − L) \ X(s)e−sL
)

, we

obtain

s2Y (s) + 3sY (s) = U(s)e−2s \ Y (s) = e−2s

s2 + 3s
︸ ︷︷ ︸

=G(s)

U(s)

Since the transfer function is not rational, we cannot calculate all of its poles

and zeros. The time delay does not affect the stability or the static gain of

the system, however. It has a pole in zero (an integrator), which is enough to

conclude that the system is unstable. The system does not have a static gain

(or, it can be said to have infinite gain).

Since the tranfer function is not rational, we cannot write the system in

standard state-space form using a finite number of state variables.
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1.2 The step response in A looks like a typical stable first-order system. The static

gain is 4, and the step response has reached 63% of this at time 0.5, which is

the system’s time constant T. This gives the transfer function

GA(s) =
4

1+ 0.5s

The step response in B describes an integrator, i.e., a first-order system with

a pole in the origin. The slope of the response is 8, which implies the transfer

function

GB(s) =
8

s

The step response in C shows oscillations, which implies a second-order system

with complex poles. Further, the oscillations are undamped (relative damping

ζ = 0). The transfer function has the structure

GC(s) =
a

s2 +ω2
a,ω > 0

The step response in D has an undershoot, which implies that the system has

a zero in the right half-plane. The step response is oscillatory but damped,

implying a second-order system with complex poles and relative damping

0 < ζ < 1. The transfer function has the structure

GD(s) =
a− s

s2 + 2ζωs+ω2
a,ω > 0, 0 < ζ < 1

1.3 a. From the magnitude curve we read out 100 (low-frequency asymptote), 10,

and 1 (high-frequency asymptote), respectively.

b. The stationary response to u(t) = asin(ωt+ φ) is given by

y(t) = pG(iω)pasin(ωt+ φ + arg G(iω))

From the Bode diagram at frequency ω = 100 rad/s we read out pG(i100)p (
1.5 and arg G(i100) ( −45○ = −π/4. We obtain

y(t) ( 0.75 sin(100t− 3π/4)

c. We have already noted that pG(i0)p = 100 and pG(i∞)p = 1. Around ω = 1 the

slope of the amplitude curve decreases by 1 and the phase decreases by almost

90○, and around ω = 100 the slope increases by 1 and the phase increases

by almost 90○. This indicates that the system has a pole in −1 and a zero in

−100. We can conclude that

G(s) ( s+ 100

s+ 1

1.4 a. The low-frequency asymptote (s → 0) is given by G(s) ( 1, and the high-

freqency asymptote (s →∞) is given by G(s) ( 1
sT

. The slope of the magnitude

curve starts at 0 and decreases by 1 around ω = 1/T (the magnitude of the

pole). The phase curve starts at 0○ and decreases by 90○ around ω = 1/T.

See Figure 1.1.
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Figure 1.1 Bode diagram of G(s) = 1
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Figure 1.2 Bode diagram of G(s) = K
(

1+ 1

sTi

)

b. Low-frequency asymptote: G(s) ( K
sTi

High-freqency asymptote: G(s) ( K .

The slope of the magnitude curve starts at −1 and increases by 1 around

ω = 1/Ti (the magnitude of the zero). The phase curve starts at −90○ and

increases by 90○ around ω = 1/Ti. See Figure 1.2.

c. Low-frequency asymptote: G(s) ( 1. High-freqency asymptote: G(s) ( N. The

slope of the magnitude curve starts at 0, increases by 1 around ω = b, and

decreases by 1 around ω = bN. The phase curve starts at 0○, increases around

ω = b, and decreases down to 0○ again at ω = bN. (The maximum phase lead

occurs around ω = b
√

N; the exact value depends on N and can be found in

the Collection of Formulae.) See Figure 1.3.

1.5 a. In the Laplace domain, tracing backwards from the output y and setting all

other inputs than r to zero, we obtain

Y = PC(R − Y ) \ Y = PC

1+ PC
R

8



Solutions 1. Control Basics

pG
(iω
)p

a
rg

G
(iω
)

ω

ω
b bN

b
√

N

+1

1

N

0○
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b.

V = −C(W1 + PV) \ V = −CW1

1+ C P
W

1.6 a.

Y = (P1 + P2C2)C1(Ry − Y ) \ Y = (P1 + P2C2)C1

1+ (P1 + P2C2)C1

Ry

b.

U1 = −C1(P1U1 + P2C2(U1 − Ru1
)) \ U1 =

C1 P2C2

1+ C1(P1 + P2C2)
Ru1

1.7 a. The eigenvalues λ of the A matrix are given by

det(λI − A) =
∣
∣
∣
∣

λ −1

2 λ+ 3

∣
∣
∣
∣ = λ2 + 3λ+ 2 = 0 [ λ1 = −1, λ2 = −2

The system is stable since both eigenvalues are in the left half-plane.

b. Since the A matrix is triangular, we can immediately read out the eigenvalues

as the diagonal elements: λ1 = −1, λ2 = −2, λ3 = 3. The system is unstable

since one eigenvalue is in the right half-plane.

c. The characteristic polynomial (the denominator of the transfer function) has

positive coefficients, which is both a sufficient and a necessary condition for

the stability of second-order systems.

d. A necessary condition for stability is that all coefficients of the characteristic

polynomial have the same sign, which is not the case here.

1.8 a. The closed loop is given by

G0 K

1+ G0 K
= 10K

(s+ 1)(s+ 2)(s+ 3) + 10K

with the characteristic polynomial s3 + 6s2 + 11s + 6 + 10K . A third-order

polynomial s3 + a1s2 + a2s+ a3 has LHP roots iff all coefficients are positive

and a1a2 > a3. We get 6 · 11 > 6+ 10K and 6+ 10K > 0. In total,

0 < K < 6
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b. From the Bode diagram we can read that the Nyquist curve crosses the

negative real axis (arg G0 = −180○) at around ω0 ( 3.2 rad/s and that

pG(iω0)p ( 0.15. The gain margin is hence Am = 1
0.15

( 6. K must be smaller

than this value to guarantee the Nyquist curve does not encircle −1.

1.9 a. The block diagram immediately gives

G(s) =
[

1
s+1

1
s+2

1
s(s+1)

1
s(s+2)

]

b. Introducing one state variable per subsystem output, one obtains

ẋ1 = −x1 + u1

ẋ2 = −2x2 + u2

ẋ3 = x1 + x2

y1 = x1 + x2

y2 = x3

1.10 a. The system matrices are

A =
[−2 1

0 −3

]

, B =
[

1 0

1 2

]

, C =





1 1

2 0

0 2



 , D =





0 0

1 0

0 1





b. The transfer matrix is given by

G(s) = C(sI − A)−1B+ D =







2s+6
s2+5s+6

2s+6
s2+5s+6

s2+7s+14
s2+5s+6

4
s2+5s+6

2
s+3

s+7
s+3







1.11 a. Laplace transformation of the differential equation gives

Y (s) = b11s+ b12

s2 + a1s+ a2

U1(s) +
b21s+ b22

s2 + a1s+ a2

U2(s)

The transfer matrix becomes

[

b11s+ b12

s2 + a1s+ a2

b21s+ b22

s2 + a1s+ a2

]

b. We can use for instance the observable canonical form and let each input gen-

erate one column in the B matrix. The state-space realization then becomes

ẋ(t) =
[−a1 1

−a2 0

]

x(t) +
[

b11 b21

b12 b22

]

u(t)

y(t) = [ 1 0 ] x(t)
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