
Lecture 14 – Outline

1. Model reduction by balanced truncation
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Model reduction

Mathematical modeling can lead to dynamical models of

very high order

Controller synthesis using the Q-parameterization can lead

to very high order controllers

Need for systematic way to reduce the model order

In general terms we would like to achieve

Gr (s) ≈ G(s)

where Gr (s) has (much) lower order than G(s)
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Example – DC-motor
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In Lecture 13 we minimized
∫ ∞

−∞
|Gzw(iω)|

2dω subject to step

response bounds on Gz1w1 and Gz2w2 :
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Example – DC-motor

Recall that

C(s) =
[
I + Q (s)Pyu(s)

]−1
Q (s), with Q (s) =

∑N
k=0 Q kφk(s).

Controller order grows with the number of basis functions.

Optimized controller for DC-motor has order 14. Is that really

needed?
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Controllability and observability Gramians

For a stable system

$x = Ax + Bu

y = Cx + Du

the controllability Gramian Wc =

∫ ∞

0
eAtBBT eAT tdt is found by

solving

AWc +WcAT
+ BBT

= 0

and the observability Gramian Wo =

∫ ∞

0
eAT tCTCeAtdt is found by

solving

ATWo +WoA + CTC = 0

Idea for model reduction: Remove states that are both poorly

controllable and poorly observable.
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Hankel singular values

The Hankel singular values are defined as the square roots of

the eigenvalues of WcWo:

σi =
√
λi(WcWo)

They measure the “energy” of each mode in the system and are

usually ordered such that

σ1 ≥ σ2 ≥ . . . ≥ σn > 0

Matlab: sigmas = hsvd(sys)

(Unstable modes are assigned the value ∞)
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Example

System:

G(s) =
1 − s

s6
+ 3s5

+ 5s4
+ 7s3

+ 5s2
+ 3s + 1

Hankel singular values (independent of realization):

σ =
[
1.984 1.918 0.751 0.329 0.148 0.004

]
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Balanced realizations

Given a stable system (A, B,C,D) with Gramians Wc and Wo,

the variable transformation x̂ = T x gives the new state-space

matrices Â = T AT−1, B̂ = T B, Ĉ = CT−1, D̂ = D and the new

Gramians

Ŵc = TWcTT

Ŵo = T−TWoT−1

A particular choice of T gives Ŵc = Ŵo = Σ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

σ1 0
. . .

0 σn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

The corresponding realization (Â, B̂, Ĉ, D̂) is called a balanced

realization.
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Computing the balancing state transformation

(Not done by hand)

Compute the Cholesky decompositions

Wc = WWT , Wo = Z ZT

and the singular value decomposition

WT Z = U ΣVT

The balancing transformation is then given by

T = Σ−
1
2 VT ZT , T−1

= WU Σ−
1
2

Matlab: [sysb,sigmas,T] = balreal(sys)
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Hankel singular values and truncation

Notice that

⎡
⎢
⎢
⎢
⎢
⎢
⎣

σ2
1

0
. . .

0 σ2
n

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= (TWcTT )
︸ !!!!!︷︷ !!!!!︸

Σ

(T−TWoT−1)
︸ !!!!!!!!!︷︷ !!!!!!!!!︸

Σ

= TWcWoT−1

so the Hankel singular values are independent of the coordinate

system.

A small Hankel singular value σi corresponds to a state that is

both weakly controllable and weakly observable. Hence, it can be

truncated without much effect on the input-output behavior.
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Model reduction by balanced truncation

Consider a balanced realization

[
$̂x1
$̂x2

]

=

[
A11 A12

A21 A22

] [
x̂1

x̂2

]

+

[
B1

B2

]

u Σ =

[
Σ1 0

0 Σ2

]

y =
[
C1 C2

]
[
x̂1

x̂2

]

+ Du

with the lower part of the Gramian being Σ2 = diag(σr+1, . . . , σn).

Two ways to do the reduction:

1 Simply remove x̂2 and keep (A11, B1,C1,D).

2 (Default:) Set $̂x2 = 0. Gives the reduced system

{
$̂x1 = (A11 − A12 A−1

22
A21)x̂1 + (B1 − A12 A−1

22
B2)u

yr = (C1 − C2 A−1
22

A21)x̂1 + (D − C2 A−1
22

B2)u
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Error bounds for balanced truncation

One way to measure the approximation error between the

original system G(s) and the reduced system Gr (s) is

∥G − Gr ∥∞ = max
ω

|G(iω) − Gr (iω)| = sup
u

∥y − yr ∥2

∥u∥2

For either of the truncation methods above, it holds that

σr+1 ≤ ∥G − Gr ∥∞ ≤ 2(σr+1 + · · · + σn)
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Example

System:

G(s) =
1 − s

s6
+ 3s5

+ 5s4
+ 7s3

+ 5s2
+ 3s + 1

Keeping r = 3 states gives the reduced system (default method):

Gr (s) =
0.3717s3 − 0.9682s2

+ 1.14s − 0.5185

s3
+ 1.136s2

+ 0.825s + 0.5185

Error bounds: 0.329 ≤ ∥G − Gr ∥∞ ≤ 0.963

Actual error: ∥G − Gr ∥∞ = 0.573

Matlab: [Gbal,sigmas]=balreal(G); Gred=modred(Gbal,4:6)
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Example
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Handling unstable systems

Before model reduction, decompose the system into its stable

and nonstable parts:

G(s) = Gs(s) + Gns(s)

Perform the reduction only on Gs(s); then add Gns(s) again

(Performed automatically by Matlab’s balreal and balred)
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Example – DC-motor

Computing the 14 Hankel singular values gives

[
∞ 0.306 0.244 0.153 0.115 0.106 0.019 0.011 . . .

]
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The unstable mode is excluded from the reduction.
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Example – DC-motor

Straight truncation gives reduced controller with 6 states:
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Matlab:

ctrl_red=balred(ctrl_opt,6,’StateElimMethod’,’Truncate’)
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Example – DC-motor

Are the design specifications still satisfied?

0 1 2 3 4 5
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
Q-design

6th order reduced model

Step Response

Time (seconds)

A
m

p
lit

u
d
e

0 1 2 3 4 5
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Q-design

6th order reduced model

Step Response

Time (seconds)

A
m

p
lit

u
d
e

Almost. . .

Automatic Control LTH, 2018 Lecture 14 FRTN10 Multivariable Control

Summary

Low-order controllers are preferred from an implementation

point of view (execution time, memory usage)

Balanced realizations reveal the less important states

Model reduction by balanced trunction has good theoretical

error bounds

Many possible extensions, e.g.

optimal model reduction (non-convex problem)

frequency weighting

reduction of unstable systems
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