
Lecture 13

Control Synthesis by Convex
Optimization∗

This chapter is devoted to numerical optimization of controllers using the Q-parametrization
(Youla). In the previous lecture, we saw that a closed loop map Gzw(s) from w to z in the
diagram of Figure 13.1 is achievable by a stabilizing controller C(s) if and only if it has the
form

Gzw(s) = Pzw(s) + Pzu(s)Q(s)Pyw(s)

Hence a control design problem can be viewed as a search for Q(s), to get desirable properties
of Gzw(s). Once Q(s) is determined, a corresponding controller is derived by the formula

C(s) =
[

I + Q(s)Pyu(s)
]−1

Q(s).

[

Pzw(s) Pzu(s)
Pyw(s) Pyu(s)

]

C(s)

✛ ✛

✛

✲
control inputs u

controlled variables z

measurements y

distubances w

Figure 13.1 The controller C(s) is computed to optimize the closed loop map from w to z.

Many natural specifications on the closed loop system can be stated as norm constraints on
Gzw(s). This, together with the fact that Q(s) appears linearly in the expression for Gzw(s),
makes it possible to do controller design using convex optimization. This is a special kind of
optimization that allows for fast algorithms and guaranteed convergence. The basics will be
described next.

13.1 Basics of Convex Optimization

We consider optimization problems of the form

minimize f0(x)
subject to fi(x) ≤ bi i = 1, . . . , m

(13.1)

where x is the optimization variable, f0 is the objective function and f1, . . . , fm are constraints
functions. This is a convex optimization problem if f0, . . . , fm are convex, that is if

fi(θ x+ (1− θ)y) ≤ θ fi(x) + (1− θ) fi(y)

for all x, y and for 0 ≤ θ ≤ 1. See Figure 13.2. Convex optimizations problems are particularly
easy to solve, since

∗Much of this lecture is based on source material kindly provided by Stephen Boyd.
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Figure 13.2 A straight line connecting two point on the graph of a convex function always stays above the
graph

Examples of convex functions are the following:

• affine functions: aT x+ b where x, a ∈ Rn, b ∈ R

• exponentials: eax for x, a ∈ R

• powers: xa for x, a > 0
• norms: qxq

The most common convex optimization problem is the least-squares problem, where f0 is
quadratic and no constraints exist.

minimize qAx− bq2

This was used in earlier lectures to solve linear-quadratic control problems.

Another important class of convex optimization problems is linear programming, where the
functions f0, . . . , fm are all affine:

minimize cT x x ∈ Rn

subject to aT
i x ≤ bi i = 1, . . . , m

Geometrically, the linear functions define a polyhedron, and the optimum is achieved at
a corner of the polyhedron. See Figure 13.3. Linear programs can be solved efficiently for

P
x⋆

−c

Figure 13.3 A linear program finds a point as far as possible in the direction −c within a polyhedron
defined by the constraints aT

i x ≤ bi
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Figure 13.4 A quadratic program finds the smallest ellipsoid that touches a polyhedron defined by the
constraints aT

i x ≤ bi

problems with hundreds of thousands of variables and they are used in a wide range of
applications. The complexity grows as n2m when m ≥ n.

Combining a quadratic objective with linear constraints, we get another well known class of
convex optimization problems, known as quadratic programming.

minimize 1
2 xT P x+ qT x+ r x ∈ Rn

subject to aT
i x ≤ bi i = 1, . . . , m

The geometric picture is again optimization over a polyhedron, but the quadratic objective
need not necessarily achieve its optimum at a corner. See Figure 13.4

If instead the constraints are defined by convex quadratic functions, the convex optimization
problem is called second order cone programming:

minimize cT x x ∈ Rn

subject to qAi x+ biq2 ≤ cT
i x+ di i = 1, . . . , m

All the previous problem classes can be restated into this form and solved using reliable and
efficient algorithms. In fact, many modern algorithms for convex programming are based on
Newton’s method:

x+ = x− t[∇2 f (x)]−1∇ f (x)

where t is chosen by line search. The iteration above can be used to find the minimum of f (x)
when there are no constraints. See Figure 13.5.

For problems with constraints, many algorithms use so-called barrier functions to enforce the
constraints. For example, the modified objective function

f0(x) − (1/γ )
m∑

i=1

log(− fi(x))

is similar to f0(x) when fi(x) > 0 and γ is small, but the function grows to infinity when
x approaches the constraint boundary fi(x) = 0. The minimum of the modified objective
approaches the minimum of (13.1) as γ →∞.
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13.2 Convex Specifications on Feedback Systems

13.2 Convex Specifications on Feedback Systems

Several important specifications on control systems can be stated as convex constraints on the
closed loop transfer function Gzw(s). Alternatively, because of the linear relationship between
Gzw(s) and Q(s), the same specifications can be viewed as convex constraints on Q(s):

• Stability of the closed loop system
• Lower and upper bounds on step response from wi to z j at time ti

• Upper bound on Bode amplitude from wi to z j at frequency ω i

• Interval bound on Bode phase from wi to z j at frequency ω i

In each case the convexity must be verified according to the definition: If G1
zw(s) and G2

zw(s) are
stable, then θG1

zw(s)+ (1−θ)G2
zw(s) is stable for all θ ∈ [0, 1]. Similarly, if the step responses

of G1
z jwi
(s) and G2

z jwi
(s) stay within given lower and upper bounds at time ti, then the same is

true for the intermediate transfer functions θG1
zw(s) + (1− θ)G2

zw(s). See Figure 13.6.

Upper bounds on the Bode amplitude at a certain frequency are convex constraints (see
Figure 13.7), because

pG1
z jwi
(iω)p ≤ γ, pG2

z jwi
(iω)p ≤ γ [ pG1

z jwi
(iω) + (1− θ)G2

z jwi
(iω)p ≤ γ

However, the implication does not hold for lower bounds on the amplitude function, because
two points outside the circular disc defined by the amplitude bound may very well have a
convex combination that is inside the disc. See Figure 13.8. Hence this type of specifications
are not easily treated in the context of convex optimization.

13.3 Optimization of Controllers

By using the convex specifications discussed in the previous section, a typical convex optimiza-
tion problem for control synthesis could be stated as follows:

MinimizeQ

∫∞
−∞ pPzw(iω) + Pzu(iω)Q(iω)Pyw(iω)p2dω

subject to

step response wi → z j is smaller than fi jk at time tk

step response wi → z j is bigger than �i jk at time tk

Bode amplitude wi → z j is smaller than hi jk at ω k
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Figure 13.5 A few steps of Newton iteration are illustrated to the left, together with dotted level curves of
the objective function. The ellipsoids illustrate level curves of the local second order approximation of f . The
right plot shows the values of the objective function, illustrating quadratic convergence near the optimum.
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Figure 13.6 Both lower bounds and upper bounds are convex, because intermediate transfer functions have
intermediate step responses.
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Figure 13.7 An upper bound on the Bode amplitude is a convex quadratic constraint.

Here the optimization variable is Q, which could be any stable transfer matrix of the right di-
mension. In order to solve the problem numerically, we need to restrict the optimization to a fi-
nite number of parameters. Hence we will consider a fixed set of basis function φ0(s), . . . , φ N(s)
and search numerically for matrices Q0, . . . , QN such that the closed loop transfer matrix
Gzw(s) satisfies given specifications when

Gzw(s) = Pzw(s) + Pzu(s)Q(s)Pyw(s) and Q(s) =
N∑

k=0

Qkφ k(s)

An intuitively simple parametrization of Q(s) is obtained by letting each parameter Qk rep-
resent a point on the corresponding impulse response in time domain:
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Figure 13.8 Lower bounds on the Bode amplitude give rise to non-convex constraints and should be avoided
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13.4 Example — DCservo revisited
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Figure 13.9 The transfer function Q(s) = ∑N
k=0 Qkφ k(s) can be parametrized by letting each parameter

Qk represent a point on the corresponding impulse response.

This gives a second-order-cone programming problem in the coefficients of the Qk-matrices:

MinimizeQk

∫∞
−∞ pPzw(iω) + Pzu(iω)

Q(iω)︷ ︸︸ ︷∑

k

Qkφ k(iω)Q(iω)Pyw(iω)p2dω
}

quadratic objective

subject to
step response wi → z j is smaller than fi jk at time tk

step response wi → z j is bigger than �i jk at time tk

}

linear constraints

Bode amplitude wi → z j is smaller than hi jk at ω k

}

quadratic constraints

Once Q(s) has been determined, we will recover the desired controller from the formula

C(s) =
[

I + Q(s)Pyu(s)
]−1

Q(s)
This controller may be of very high order and unsuitable for implementation. However, the
computation is still useful, for two reasons:

1. There are techniques for model reduction, which can be used to approximate the high
order controller with low order controllers. This will be described in detail in the next
lecture.

2. It is useful to know the limits of what is achievable by a linear time-invariant con-
troller. Studying the behavior of the optimal high order controller can give a better
understanding for the implications of the closed loop system specifications.

13.4 Example — DCservo revisited

Consider again control of a DC servo as in the previous lecture: The transfer matrix from
(w1, w2) to (z1, z2) is

Gzw(s) =
[ P

1+PC
−PC
1+PC

1
1+PC

−C
1+PC

]

with P(s) = 20
s(s+1) . We will choose C(s) to minimize

trace
∫∞

−∞
Gzw(iω)Gzw(iω)∗dω

subject to bounds on the time-domain response to a step disturbance w1 and also bounds on
the time-domain response to a reference step. Figure 13.11 shows the time-domain response
of the optimized closed loop system together with the upper and lower bounds.

If the optimization is re-done without the upper bound on the input disturbance response, the
controller drops the integral action and accepts a static error in the disturbance response. See
Figure 13.12.
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Figure 13.10 Feedback control of a DC servo.
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Figure 13.11 Time-domain responses for the optimized closed loop system (middle plot) plotted together
with optimization bounds
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Figure 13.12 Time-domain responses for the optimized closed loop system with out upper bound on the
response to the input disturbance. In this case we get a static error, so the controller has no longer any
integral action.
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