

Lecture 13 - Outline

- Examples
- Introduction to convex optimization
- Controller optimization using Youla parameterization
- Examples revisited

Parts of this lecture is based on material from Boyd, Vandenberghe and coauthors. See also lecture notes and links on course homepage.

Automatic Control LTH, 2018

Lecture 13 FRTN10 Multivariable Control

Example 1 (Doyle-Stein, 1979)

Given the process

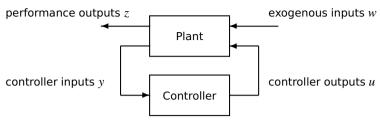
$$\dot{x} = \begin{pmatrix} -4 & -3 \\ 1 & 0 \end{pmatrix} x + \begin{pmatrix} 1 \\ 0 \end{pmatrix} u + \begin{pmatrix} -61 \\ 35 \end{pmatrix} w_1$$
$$y = \begin{pmatrix} 1 & 2 \end{pmatrix} x + w_2$$

where w_1 and w_2 are independent unit-intensity white noise processes, find a controller that minimizes

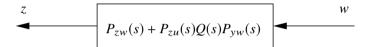
$$J = E \left\{ 80 x^T \begin{pmatrix} 1 & \sqrt{35} \\ \sqrt{35} & 35 \end{pmatrix} x + u^2 \right\}$$

while satisfying the robustness constraint $M_s \leq 2$

General idea for Lectures 12-14



The choice of controller corresponds to designing a transfer matrix Q(s), to get desirable properties of the following map from w to z:



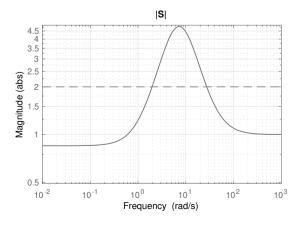
Once Q(s) has been designed, the corresponding controller can be found.

Automatic Control LTH, 2018

Lecture 13 FRTN10 Multivariable Control

Example 1 (Doyle-Stein, 1979)

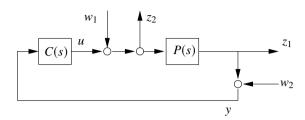
LQG design gives a controller that does not satisfy the constraint on |S| (see Lecture 11):



Automatic Control LTH, 2018 Lecture 13 FRTN10 Multivariable Control

Automatic Control LTH, 2018

Example 2 - DC-motor



Assume we want to optimize the closed-loop transfer matrix from $(w_1, w_2)^T$ to $(z_1, z_2)^T$,

$$G_{zw}(s) = \begin{bmatrix} \frac{P}{1-PC} & \frac{PC}{1-PC} \\ \frac{1}{1-PC} & \frac{C}{1-PC} \end{bmatrix}$$

when $P(s) = \frac{20}{s(s+1)}$.

Automatic Control LTH, 2018

Lecture 13 FRTN10 Multivariable Control

P/(1+PC)

Time (seconds)

1/(1+PC)

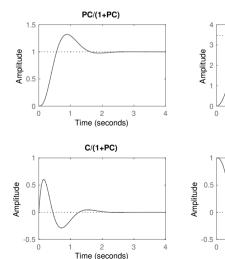
Time (seconds)

Lecture 13 FRTN10 Multivariable Control

3

Example 2 - DC-motor

"Gang of four" step responses:



Automatic Control LTH, 2018

Example 2 - DC-motor

It can be shown that minimizing

$$\int_{-\infty}^{\infty} |G_{zw}(i\omega)|^2 d\omega$$

is equivalent to solving the LQG problem with (see Lecture 11)

$$A = \begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix}, B = G = \begin{pmatrix} 20 \\ 0 \end{pmatrix}, C = \begin{pmatrix} 0 & 1 \end{pmatrix}$$

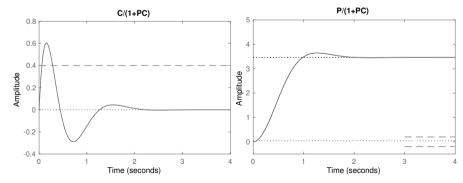
$$Q_1 = C^T C$$
, $Q_2 = R_1 = R_2 = 1$

Automatic Control LTH, 2018

Lecture 13 FRTN10 Multivariable Control

Example 2 - DC-motor

Suppose we want to add some time-domain constraints:



- Control signal $|u| \le 0.4$ for unit output disturbance (or setpoint change)
- Output signal $|y| \le 0.2$ for $t \ge 3$ for unit load disturbance

Automatic Control LTH, 2018

Lecture 13 - Outline

Convex optimization

Examples

2 Introduction to convex optimization

3 Controller optimization using Youla parameterization

Examples revisited

Automatic Control LTH, 2018

Lecture 13 FRTN10 Multivariable Control

Mathematical formulation

minimize $f_0(x)$ subject to $f_i(x) \leq b_i$, i = 1, ..., m

• objective and constraint functions are convex:

$$f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$$

if
$$\alpha + \beta = 1$$
, $\alpha \ge 0$, $\beta \ge 0$

• includes least-squares problems and linear programs as special cases

Convex optimization = minimization of convex function over convex set

- Also known as convex programming
- Key property: Any local minimum must also be a global minimum
- Convex problems can be solved, and efficient solvers are available
 - By contrast, most nonconvex problems cannot be solved
- Many engineering design problems can be formulated as convex optimization problems

Automatic Control LTH, 2018

Lecture 13 FRTN10 Multivariable Control

Least squares

minimize $||Ax - b||_2^2$

solving least-squares problems

- analytical solution: $x^* = (A^T A)^{-1} A^T b$
- reliable and efficient algorithms and software
- computation time proportional to n^2k $(A \in \mathbf{R}^{k \times n})$; less if structured
- a mature technology

using least-squares

- least-squares problems are easy to recognize
- ullet a few standard techniques increase flexibility (e.g., including weights, adding regularization terms)

Automatic Control LTH, 2018 Lecture 13 FRTN10 Multivariable Control

Automatic Control LTH, 2018

Linear program (LP)

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$

solving linear programs

- no analytical formula for solution
- reliable and efficient algorithms and software
- computation time proportional to n^2m if m > n; less with structure
- a mature technology

using linear programming

- not as easy to recognize as least-squares problems
- a few standard tricks used to convert problems into linear programs (e.g., problems involving ℓ_1 - or ℓ_{∞} -norms, piecewise-linear functions)

Automatic Control LTH, 2018

Lecture 13 FRTN10 Multivariable Control

General convex program

solving convex optimization problems

- no analytical solution
- reliable and efficient algorithms
- computation time (roughly) proportional to $\max\{n^3, n^2m, F\}$, where F is cost of evaluating f_i 's and their first and second derivatives
- almost a technology

using convex optimization

- often difficult to recognize
- many tricks for transforming problems into convex form
- surprisingly many problems can be solved via convex optimization

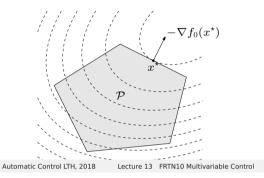
Automatic Control LTH, 2018 Lecture 13 FRTN10 Multivariable Control

Quadratic program (QP)

minimize
$$(1/2)x^TPx + q^Tx + r$$

subject to $Gx \leq h$
 $Ax = b$

- $P \in \mathbf{S}_{\perp}^n$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron



Brief history of convex optimization

theory (convex analysis): ca1900–1970

algorithms

- 1947: simplex algorithm for linear programming (Dantzig)
- 1960s: early interior-point methods (Fiacco & McCormick, Dikin, . . .)
- 1970s: ellipsoid method and other subgradient methods
- 1980s: polynomial-time interior-point methods for linear programming (Karmarkar 1984)
- late 1980s-now: polynomial-time interior-point methods for nonlinear convex optimization (Nesterov & Nemirovski 1994)

applications

- before 1990: mostly in operations research; few in engineering
- since 1990: many new applications in engineering (control, signal processing, communications, circuit design, . . .); new problem classes (semidefinite and second-order cone programming, robust optimization)

Automatic Control LTH, 2018

Definition of convex function

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if $\operatorname{\mathbf{dom}} f$ is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \mathbf{dom} f$, $0 < \theta < 1$

- f is concave if -f is convex
- f is strictly convex if $\operatorname{dom} f$ is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for $x, y \in \operatorname{\mathbf{dom}} f$, $x \neq y$, $0 < \theta < 1$

Automatic Control LTH, 2018 Lecture 13 FRTN10 Multivariable Control

Examples on \mathbb{R}^n and $\mathbb{R}^{m \times n}$

affine functions are convex and concave; all norms are convex examples on R^n

• affine function $f(x) = a^T x + b$

$$\bullet$$
 norms: $\|x\|_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ for $p \geq 1$; $\|x\|_\infty = \max_k |x_k|$

examples on $\mathbb{R}^{m \times n}$ ($m \times n$ matrices)

affine function

$$f(X) = \mathbf{tr}(A^T X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$$

• spectral (maximum singular value) norm

$$f(X) = ||X||_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}$$

Examples on R

convex:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- exponential: e^{ax} , for any $a \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++} , for $\alpha > 1$ or $\alpha < 0$
- powers of absolute value: $|x|^p$ on **R**, for $p \ge 1$
- negative entropy: $x \log x$ on \mathbf{R}_{++}

concave:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++} , for $0 \le \alpha \le 1$
- logarithm: $\log x$ on \mathbf{R}_{++}

Automatic Control LTH, 2018

Lecture 13 FRTN10 Multivariable Control

Solving convex programs

- Specialized methods for different subtypes of convex programs
- Medium-scale problems (thousands of variables and constraints) can be solved using standard interior point methods
 - Relax the constraints using barrier functions
 - Use Newton's method in each iteration while gradually sharpening the barriers
- Large-scale problems (millions or billions of variables and constraints) require special methods and special software

Barrier method for constrained minimization

minimize
$$f_0(x)$$

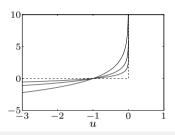
subject to $f_i(x) \le 0$ $1 = 1, ..., m$
 $Ax = b$

approximation via logarithmic barrier

minimize
$$f_0(x) - (1/t) \sum_{i=1}^m \log(-f_i(x))$$

subject to $Ax = b$

- an equality constrained problem
- for t > 0, $-(1/t)\log(-u)$ is a smooth approximation of I_-
- ullet approximation improves as $t o \infty$



Automatic Control LTH, 2018

Lecture 13 FRTN10 Multivariable Control

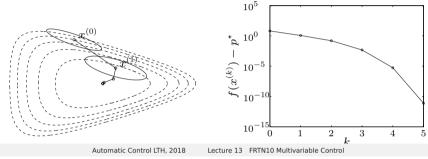
Software for convex optimization

- CVX Matlab toolbox for disciplined convex programming, developed at Stanford by Stephen Boyd and co-workers
 - Easily integrated with Python, Julia
 - CVXGEN C code generation
- YALMIP Matlab toolbox for convex and nonconvex optimization problems
- Solvers (plugins):
 - SeDuMi software for optimization over symmetric cones
 - SDPT3 software for semidefinite programming
 - Mosek commercial optimization software
 - Gurobi commercial optimization software

Newton's method

given a starting point $x \in \operatorname{dom} f$, tolerance $\epsilon > 0$. repeat

- 1. Compute the Newton step and decrement. -2 a.s. -1 2 a.s. -2 -
- $\Delta x_{\rm nt} := -\nabla^2 f(x)^{-1} \nabla f(x); \quad \lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x).$
- 2. Stopping criterion. quit if $\lambda^2/2 \leq \epsilon$.
- 3. Line search. Choose step size t by backtracking line search.
- 4. Update. $x := x + t\Delta x_{\rm nt}$.



Lecture 13 - Outline

- Example
- 2 Introduction to convex optimization
- 3 Controller optimization using Youla parameterization
- 4 Examples revisited

Automatic Control LTH, 2018 Lecture 13 FRTN10 Multivariable Control

Automatic Control LTH, 2018

Scheme for numerical optimization of Q

Given some fixed set of basis function $\phi_0(s), \ldots, \phi_N(s)$, we will search numerically for matrices Q_0, \ldots, Q_N such that the closed-loop matrix $G_{ZW}(s)$ satisfies given specifications when

$$G_{zw}(s) = P_{zw}(s) + P_{zu}(s)Q(s)P_{yw}(s)$$
 and $Q(s) = \sum_{k=0}^{N} Q_k \phi_k(s)$

It is possible to choose the sequence $\phi_0(s)$, $\phi_1(s)$, $\phi_2(s)$, . . . such that every stable Q can be approximated arbitrarily well. In principle, every convex control design problem can be solved this way.

Automatic Control LTH, 2018

Lecture 13 FRTN10 Multivariable Control

Specifications that lead to convex constraints

- Stability of the closed-loop system
- Upper and lower bounds on step response from w_i to z_j at time t_i
- ullet Upper bound on Bode amplitude from w_i to z_j at frequency ω_i
- ullet Interval bound on Bode phase from w_i to z_j at frequency ω_i

The following constraints are however **nonconvex**:

- Stability of the controller
- ullet Lower bound on Bode amplitude from w_i to z_j at frequency ω_i

Choice of basis functions

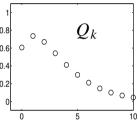
Many possibilities. Common choices:

Simplified Laguerre basis polynomials,

$$\phi_k(s) = \frac{1}{(s/a+1)^k}$$

where a should be wisely selected (rule of thumb: close to bandwidth of closed-loop system)

Pulse response parameterization (discrete time approximation)

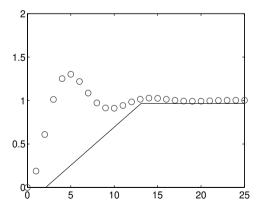


Automatic Control LTH, 2018

Lecture 13 FRTN10 Multivariable Control

Lecture 13 FRTN10 Multivariable Control

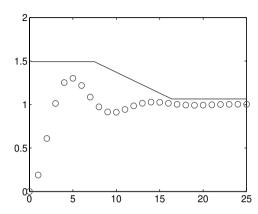
Lower bound on step response



The step response depends linearly on Q_k , so every time t_k with a lower bound gives a linear constraint.

Automatic Control LTH, 2018

Upper bound on step response

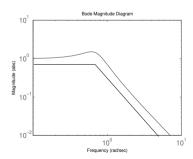


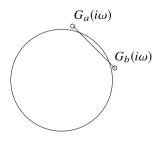
Every time t_k with an upper bound also gives a linear constraint.

Automatic Control LTH, 2018

Lecture 13 FRTN10 Multivariable Control

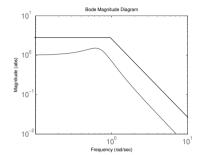
Lower bound on Bode amplitude

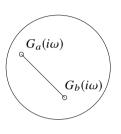




An lower bound $|G(i\omega_i)|$ is a **nonconvex** quadratic constraint. This should be avoided in optimization.

Upper bound on Bode amplitude





An amplitude bound $|G(i\omega_i)| < c$ is a quadratic constraint.

Automatic Control LTH, 2018

Lecture 13 FRTN10 Multivariable Control

Synthesis by convex optimization

Quite general control synthesis problems can be stated as convex optimization problems in the variable Q(s). The problem could have a quadratic objective, with linear/quadratic constraints, e.g.:

$$\min \quad \int_{-\infty}^{\infty} |P_{zw}(i\omega) + P_{zu}(i\omega) \underbrace{\sum_{k} Q_{k} \phi_{k}(i\omega)}_{} P_{yw}(i\omega)|^{2} d\omega \right\} \text{ quadratic objective}$$

s.t. step response
$$w_i \to z_j$$
 is smaller than f_{ijk} at time t_k step response $w_i \to z_j$ is bigger than g_{ijk} at time t_k linear constraints Bode magnitude $w_i \to z_j$ is smaller than h_{ijk} at ω_k quadratic constraints

Here $Q(s) = \sum_k Q_k \phi_k(s)$, where ϕ_1, \dots, ϕ_m are some fixed basis functions, and Q_0, \dots, Q_m are optimization variables.

Once Q(s) has been determined, the controller is obtained as

$$C(s) = \left[I + Q(s)P_{yu}(s)\right]^{-1}Q(s)$$

Automatic Control LTH, 2018 Lecture 13 FRTN10 Multivariable Control Control LTH, 2018 Lecture 13 FRTN10 Multivariable Control LTH, 2018 Lecture 14 FRTN10 Multivariable Control LTH, 2018 Lecture 14

Lecture 13 - Outline

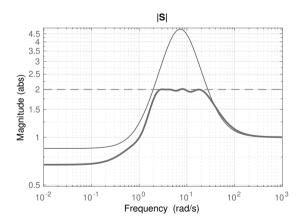
- 1 Example:
- 2 Introduction to convex optimization
- Controller optimization using Youla parameterization
- 4 Examples revisited

Automatic Control LTH, 2018

Lecture 13 FRTN10 Multivariable Control

Example 1 (Doyle-Stein, 1979)

Green: Optimization-based design with constraint on |S|:

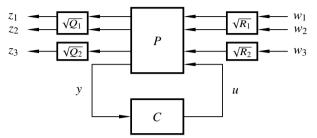


(Controller order: 12)

RV NO. 12 1000

Example 1 (Doyle-Stein, 1979)

LQG problem reformulated as extended plant model:



Minimize

$$\int_{-\infty}^{\infty} |P_{zw}(i\omega) + P_{zu}(i\omega) \sum_{k} q_k \phi_k(i\omega) P_{yw}(i\omega)|^2 d\omega$$

with q_k scalar and

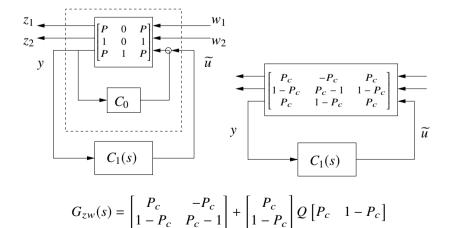
$$\phi_k(s) = \frac{1}{(s/a+1)^k}$$

Automatic Control LTH, 2018

Lecture 13 FRTN10 Multivariable Control

Example 2 - DC-servo

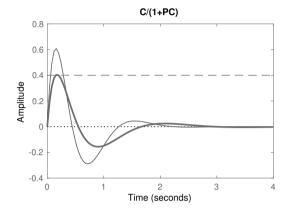
Introduce stabilizing controller C_0 and reformulate for optimization:



Automatic Control LTH, 2018 Lecture 13 FRTN10 Multivariable Control

Example 2 - DC-servo

Green: Optimization with control signal limitation:



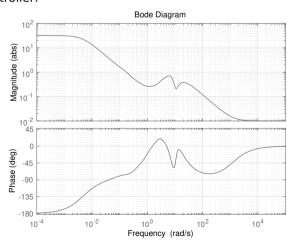
(Controller order: 14)

Automatic Control LTH, 2018

Lecture 13 FRTN10 Multivariable Control

Example 2 - DC-servo

Final controller:



Is it any good? With optimization, you get what you ask for!

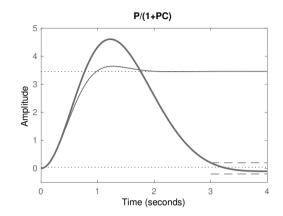
Automatic Control LTH, 2018

Lecture 13 FRTN10 Multivariable Control

RV101

Example 2 - DC-servo

Green: Also adding the limit on y, $3 \le t \le 4$:



(Controller order: 14)

Automatic Control LTH, 2018

Lecture 13 FRTN10 Multivariable Control

Lecture 13 - summary

- $\bullet\,$ There are efficient algorithms for solving convex programs
 - Local optimum ⇔ global optimum
- The Youla parameterization allows us to use these algorithms for control synthesis
- Resulting controllers typically have high order. Order reduction will be studied in the next lecture.

Further reading: Stephen Boyd's books on convex optimization are available online:

http://stanford.edu/~boyd/books.html

Automatic Control LTH, 2018