
Lecture 12 – Outline

1 The Youla (Q) parameterization

2 Internal model control (IMC)
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Basic idea of Youla and IMC

Assume stable SISO plant P. Model for design:

r y

Σ C(s) P(s)

−1

⇔
r y

Q(s) P(s)

PC

1 + PC
= PQ

Q =
C

1 + PC

Design Q to get desired closed-loop properties. Then C =
Q

1 −QP
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General idea for Lectures 12–14

Plant

Controller

✛ ✛

✛

✲

controller outputs u

performance outputs z

controller inputs y

exogenous inputs w

The choice of controller corresponds to designing a transfer matrix

Q(s), to get desirable properties of the following map from w to z:

z w

Pzw(s) + Pzu(s)Q(s)Pyw(s)

Once Q(s) has been designed, the corresponding controller can be found.
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The Youla (Q) parameterization

General feedback control system (assuming positive feedback!):

Pzw(s) Pzu(s)

Pyw(s) Pyu(s)

C(s)

✛ ✛

✛

✲

u

z

y

w

Z(s) = Pzw(s)W(s) + Pzu(s)U(s)

Y (s) = Pyw(s)W(s) + Pyu(s)U(s)

U(s) = C(s)Y (s)
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The Youla (Q) parameterization

Pzw(s) Pzu(s)

Pyw(s) Pyu(s)

C(s)

✛ ✛

✛

✲

u

z

y

w

Closed-loop transfer function from w to z:

Gzw(s) = Pzw(s) + Pzu(s)C(s)
[
I − Pyu(s)C(s)

]−1

︸!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!︸
=Q(s)

Pyw(s)

Given Q(s), the controller is C(s) =
[
I +Q(s)Pyu(s)

]−1
Q(s)
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All stabilizing controllers

Suppose the plant P =

[
Pzw Pzu

Pyw Pyu

]
is stable. Then

Stabilty of Q implies stability of Pzw + PzuQPyw

If Q = C
[
I − PyuC

]−1
is unstable, then the closed loop is

unstable.

Hence, if P is stable then all stabilizing controllers are given by

C(s) =
[
I +Q(s)Pyu(s)

]−1
Q(s)

where Q(s) is an arbitrary stable transfer function.
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Dealing with unstable plants

ũ

w

y

z

P0(s)

C0(s)

C1(s)

Pzw Pzũ

Pyw Pyũ

C1

✛ ✛

✛

✲

ũ

z

y

w

If P0(s) is unstable, let C0(s) be some stabilizing controller. Then

the previous argument can be applied with Pzw, Pzũ, Pyw, and Pyũ

representing the stabilized system.
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Example – DC-motor

P(s)C(s)

z2w1

u

y

w2

z1

Assume we want to optimize the closed-loop transfer matrix from

(w1,w2)
T to (z1, z2)

T ,

Gzw(s) =

[
P

1−PC
PC

1−PC

1

1−PC
C

1−PC

]

when P(s) = 20

s(s+1) .

Find the Youla parameterization of all stable closed-loop systems

Gwz(s) and the corresponding stabilizing controllers C(s).
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Stabilizing controller for DC-motor

Generalized plant model:

w1

w2

z1

z2

y u

⎡⎢⎢⎢⎢⎣

P 0 P

1 0 1

P 1 P

⎤⎥⎥⎥⎥⎦

C(s)

P(s) = 20

s(s+1) is not stable, so introduce

C(s) = C0(s) + C1(s)

where C0(s) = −1 stabilizes the plant; Pc(s) =
P(s)

1+P(s) =
20

s2
+s+20
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Redrawn diagram for DC-motor example

ũ

w1

w2

z1

z2

y

⎡⎢⎢⎢⎢⎣

P 0 P

1 0 1

P 1 P

⎤⎥⎥⎥⎥⎦

−1

C1(s)

z1 = Pw1 + P(ũ − y)

z2 = w1 + ũ − y

y = Pw1 + w2 + P(ũ − y) ⇒ y =
P

1+P
w1 +

1

1+P
w2 +

P
1+P

ũ
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Redrawn diagram for DC-motor example

y ũ

⎡⎢⎢⎢⎢⎣

Pc −Pc Pc

1 − Pc Pc − 1 1 − Pc

Pc 1 − Pc Pc

⎤⎥⎥⎥⎥⎦

C1(s)

All stable closed-loop systems are parameterized by

Gzw =

[
Pc −Pc

1 − Pc Pc − 1

]

︸!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!︸
Pzw

+

[
Pc

1 − Pc

]

︸!!!!︷︷!!!!︸
Pzũ

Q
[
Pc 1 − Pc

]

︸!!!!!!!!!!!︷︷!!!!!!!!!!!︸
Pyw

where Q(s) is any stable transfer function.

The controllers are given by C(s) = C0(s) + C1(s) = −1 +
Q(s)

1+Q(s)Pc (s)
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Internal model control (IMC)

−1

Q(s) P(s)

Pm(s)

r

u

y

+

−

Plant

Controller

(Negative) Feedback is used only if the real plant P(s) deviates

from the model Pm(s). Q(s), P(s), Pm(s) must be stable.

If Pm(s) = P(s), the transfer function from r to y is P(s)Q(s).
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Two equivalent diagrams

−1

Q P

Pm

r
u

y

+

−

Q

1 −QPm

−1

P
r u y
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IMC design rules

With P(s) = Pm(s), the transfer function from r to y is P(s)Q(s).

For perfect reference following, one would like to have

Q(s) = P−1(s), but that is not possible (why?)

Design rules:

If P(s) is strictly proper, the inverse would have more zeros

than poles. Instead, one can choose

Q(s) =
1

(λs + 1)n
P−1(s)

where n is large enough to make Q proper. The parameter λ

determines the speed of the closed-loop system.

(cf. feedforward design in Lecture 4)
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IMC design rules

If P(s) has an unstable zero, the inverse would be unstable.

Two options:

Remove the unstable factor (−βs + 1) from the plant

numerator before inverting.

Replace the unstable factor (−βs + 1) with (βs + 1). With

this option, only the phase is modified, not the amplitude

function.

If P(s) includes a time delay, its inverse would be non-causal.

Instead, the time delay is removed before inverting.
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IMC design example 1 — first-order plant

P(s) =
1

Ts + 1

Q(s) =
1

λs + 1
P(s)−1

=
Ts + 1

λs + 1

C(s) =
Q(s)

1 −Q(s)P(s)
=

Ts+1

λs+1

1 − 1

λs+1

=
T

λ

(
1 +

1

sT

)

︸!!!!!!!!︷︷!!!!!!!!︸
PI controller

Note that Ti = T

This way of tuning a PI controller is known as lambda tuning
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IMC design example 2 — non-minimum phase plant

P(s) =
−βs + 1

Ts + 1
, β > 0

Q(s) =
(−βs + 1)

(βs + 1)
P(s)−1

=
Ts + 1

βs + 1

C(s) =
Q(s)

1 −Q(s)P(s)
=

Ts+1

βs+1

1 −
(−βs+1)
(βs+1)

=
T

2β

(
1 +

1

sT

)

︸!!!!!!!!!!︷︷!!!!!!!!!!︸
PI controller

Note that, again, Ti = T

The gain is adjusted in accordance with the fundamental limitation

imposed by the RHP zero in 1/β.
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IMC design for deadtime processes

Consider the deadtime process

P = P0e−sL

where the delay L is assumed known and constant.

Let C0 = Q/(1 −QP0) be a controller designed for the delay-free

plant model P0. Solving for Q gives

Q =
C0

1 + C0P0

The controller then becomes

C =
Q

1 −QP0e−sL
=

C0

1 + (1 − e−sL)C0P0

This modification of C0 to account for a time delay is known as a

Smith predictor.
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Smith predictor

−

−

C0 P

Pm

P0

ym

y

y0

+

+

r u

Plant
Controller

Ideally y and ym cancel each other and only feedback from y0

“without delay” is used. If P = Pm then

Y =
C0P0

1 + C0P0

e−sLR
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Example

Plant: P(s) =
1

s + 1
e−s, nominal controller: C0(s) = K

(
1 +

1

s

)

Simulation with K = 0.4, no Smith predictor:
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Example

Simulation with K = 1, no Smith predictor:
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Example

Simulation with K = 1 with Smith predictor (Pm(s) = P(s)):
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Looks perfect. But do not the forget the fundamental limitation

imposed by the time delay! Respect the rule of thumb ωc <
1.6
L

when designing C0.
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Example

Simulation with K = 1 with Smith predictor as before and true

process P(s) = 1

s+0.8
e−1.2s
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Performance degradation due to model and plant mismatch.
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Lecture 12 – summary

Idea: Parameterize the closed loop as

Gyr = PQ SISO case, for IMC design

or

Gzw = Pzw + PzuQPyw General MIMO case, suitable

for optimization

for some stable Q.

After designing Q, the controller is given by

C =
Q

1 −QP
SISO case (assuming negative feedback)

or

C =
[
I +QPyu

]−1
Q General MIMO case (positive feedback)

27/27 Automatic Control LTH, 2018 Lecture 12 FRTN10 Multivariable Control


