
Lecture 10 – Outline

1 Observer-based feedback

2 The Kalman filter
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Goal: Linear-quadratic-Gaussian control (LQG)

Plant

Controller

✛ ✛

✛

✲

control inputs u

controlled variables z

noisy

measurements y

white noise w

For a linear plant, let w be white noise of intensity R. Find a

controller that minimizes the performance index

E |z |2 = E
{

xT Q 1x + 2xT Q 12u + uT Q 2u
}

Previous lecture: State feedback solution (y = x, no noise)

Automatic Control LTH, 2018 Lecture 10 FRTN10 Multivariable Control

Output feedback using an observer

Plant

✛

Observer
✲

✛

−L
✛

✲

✛

w

u x̂y

z

Plant:

{
dx(t)
dt
= Ax(t) + Bu(t) + w1(t) (process disturbances)

y(t) = Cx(t) + w2(t) (measurement noise)

Controller:

{
dx̂(t)
dt
= Ax̂(t) + Bu(t) + K[y(t) − Cx̂(t)]

u(t) = −Lx̂(t)
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Closed-loop dynamics

Eliminate u and y:

dx(t)
dt
= Ax(t) − BLx̂(t) + w1(t)

dx̂(t)
dt
= Ax̂(t) − BLx̂(t) + K[Cx(t) − Cx̂(t)]+ Kw2(t)

Introduce the observer error x̃ = x − x̂

d

dt

[
x(t)

x̃(t)

]

=

[
A − BL BL

0 A − KC

] [
x(t)

x̃(t)

]

+

[
w1(t)

w1(t) − Kw2(t)

]

Two kinds of closed-loop poles:

Control poles: 0 = det(sI − A + BL)

Observer poles: 0 = det(sI − A + KC)

L and K can be designed independent from each other
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State observer

Dual goals:

Estimate state variables that cannot be directly measured

Filter out measurement noise

What is the optimal balance between speed of estimation and

noise reduction?
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Rudolf E. Kálmán, 1930–2016

Recipient of the 2008 Charles Stark Draper Prize from the US

National Academy of Engineering “for the devlopment and

dissemination of the optimal digital technique (known as the

Kalman Filter) that is pervasively used to control a vast array of

consumer, health, commercial and defense products.”
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Optimal filtering and prediction

Wiener (1949): Stationary input-output formulation

Kalman (1960): Time-varying state-space formulation

(discrete time) [“A new approach to linear filtering and prediction

problems”, Transactions of ASME–Journal of Basic Engineering, 82]

General problem: Estimate x(k + m ) given {y(i), u(i) | i ≤ k}

k

k kk

k 1 k 1

Smoothing (m < 0) Filtering (m = 0) Prediction (m > 0)
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Examples

Smoothing To estimate the Wednesday temperature based on

measurements from Tuesday, Wednesday and

Thursday

Filtering To estimate the Wednesday temperature based on

measurements from Monday, Tuesday and

Wednesday

Prediction To predict the Wednesday temperature based on

measurements from Sunday, Monday and Tuesday
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The optimal observer problem

The observer error dynamics are given by

dx̃

dt
= (A − KC)x̃ + ⎧

⎩ I −K ⎫
⎭ w

The disturbance w =
⎧⎪⎪⎪⎪
⎩

w1

w2

⎫⎪⎪⎪⎪
⎭
is assumed white with intensity

Φw(ω) =
⎧⎪⎪⎪⎪
⎩

R1 R12

RT

12
R2

⎫⎪⎪⎪⎪
⎭
> 0

Optimization problem: Assuming that the system is detectable

(any unstable modes are observable), find the gain K that

minimizes the stationary observer error variance

P = E x̃ x̃T
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Finding the optimal observer gain

The stationary observer error variance P is given by the Lyapunov

equation

(A − KC)P + P(A − KC)T + ⎧
⎩ I −K ⎫

⎭
⎧⎪⎪⎪⎪
⎩

R1 R12

RT

12
R2

⎫⎪⎪⎪⎪
⎭

⎧⎪⎪⎪⎪
⎩

I

−KT

⎫⎪⎪⎪⎪
⎭
= 0

Completing the square,

AP+PAT
+R1+(K−(PCT

+R12)R
−1

2
)R2(K−(PCT

+R12)R
−1

2
)T

−(PCT
+R12)R

−1

2
(PCT

+R12)
T
= 0

we find that the minimium variance is attained for

K = (PCT
+ R12)R

−1

2

What remains is an algebraic Riccati equation,

AP + PAT
+ R1 − (PCT

+ R12)R
−1

2
(PCT

+ R12)
T
= 0
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The Kalman filter

Given a detectable linear plant disturbed by white noise,

{
#x = Ax + Bu + w1

y = Cx + w2

Φw =

⎧⎪⎪⎪
⎩

R1 R12

RT

12
R2

⎫⎪⎪⎪
⎭
> 0

the optimal observer is given by

dx̂

dt
= Ax̂ + Bu + K(y − Cx̂)

where K is given by

K = (PCT
+ R12)R

−1

2

where P = E(x − x̂)(x − x̂)T > 0 is the solution to

AP + PAT
+ R1 − (PCT

+ R12)R
−1

2
(PCT

+ R12)
T
= 0
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Remarks

The optimal observer gain does not depend on what state(s) we

are interested in. The Kalman filter produces the optimal estimate

of all states at the same time.

The optimal observer gain K is static since we are solving a

steady-state problem.

(The Kalman filter can also be derived for finite-horizon problems and

problems with time-varying system matrices. We then obtain a Riccati

differential equation for P(t) and a time-varying filter gain K(t))
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Duality between LQ control and Kalman filtering

LQ control Kalman filter

A AT

B CT

Q 1 R1

Q 2 R2

Q 12 R12

S P

L KT

Matlab:

S = care(A,B,Q1,Q2,Q12)

P = care(A',C',R1,R2,R12)
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Alternative state-space models

A common alternative state-space description is

#x = Ax + Bu + Gv1

y = Cx + v2

Φv =

⎧⎪⎪⎪⎪
⎩

Rv1
Rv12

RT
v12

Rv2

⎫⎪⎪⎪⎪
⎭

This is equivalent to

#x = Ax + Bu + w1

y = Cx + w2

Φw =

⎧⎪⎪⎪⎪
⎩

GRv1
GT GRv12

RT
v12

GT Rv2

⎫⎪⎪⎪⎪
⎭

(See lqe and kalman below for even more variants)
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Kalman filter in Matlab (1a)

lqe Kalman estimator design for continuous-time systems.

Given the system

.

x = Ax + Bu + Gw {State equation}

y = Cx + Du + v {Measurements}

with unbiased process noise w and measurement noise v with

covariances

E{ww'} = Q, E{vv'} = R, E{wv'} = N ,

[L,P,E] = lqe(A,G,C,Q,R,N) returns the observer gain matrix L

such that the stationary Kalman filter

.

x_e = Ax_e + Bu + L(y - Cx_e - Du)

produces an optimal state estimate x_e of x using the sensor

measurements y. The resulting Kalman estimator can be formed

with ESTIM.
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Kalman filter in Matlab (1b)

estim Form estimator given estimator gain.

EST = estim(SYS,L) produces an estimator EST with gain L for

the outputs and states of the state-space model SYS, assuming

all inputs of SYS are stochastic and all outputs are measured.

For continuous-time systems

.

SYS: x = Ax + Bw , y = Cx + Dw (with w stochastic),

the estimator equations are

.

x_e = [A-LC] x_e + Ly

| y_e | = | C | x_e

| x_e | | I |

and the outputs x_e(t) and y_e(t) of EST are estimates of x(t)

and y(t)=Cx(t).
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Kalman filter in Matlab (2)

kalman Kalman state estimator.

[KEST,L,P] = kalman(SYS,QN,RN,NN) designs a Kalman estimator KEST for

the continuous- or discrete-time plant SYS. For continuous-time plants

.

x = Ax + Bu + Gw {State equation}

y = Cx + Du + Hw + v {Measurements}

with known inputs u, process disturbances w, and measurement noise v,

KEST uses [u(t);y(t)] to generate optimal estimates y_e(t),x_e(t) of

y(t),x(t) by:

.

x_e = Ax_e + Bu + L (y - Cx_e - Du)

|y_e| = | C | x_e + | D | u

|x_e| | I | | 0 |

kalman takes the state-space model SYS=SS(A,[B G],C,[D H]) and the

covariance matrices:

QN = E{ww'}, RN = E{vv'}, NN = E{wv'}.
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Example 1 – Kalman filter for an integrator

#x(t) = w1(t)

y(t) = x(t) + w2(t)
Φw =

⎧⎪⎪⎪⎪
⎩

R1 0

0 R2

⎫⎪⎪⎪⎪
⎭

Kalman filter:

dx̂

dt
= Ax̂(t) + Bu(t) + K[y(t) − Cx̂(t)]

Riccati equation: 0 = R1 − P2/R2 ⇒ P =
√

R1R2

Filter gain: K = P/R2 =

√
R1/R2

Interpretation?
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Example 2 – Tracking of a moving object

Position readings y = (y1, y2)
T with measurement noise:

-1.5 -1 -0.5 0 0.5 1 1.5

y
1

-1.5

-1

-0.5

0

0.5

1

1.5

y
2

Measured position

Would like to estimate the true position (p1, p2)
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Example 2 – Tracking of a moving object

Dynamic model: Two double integrators driven by noise, %pi = w1i

State vector: x =
(
p1 #p1 p2 #p2

)T

State-space model:

#x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

x +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

0 0

1 0

0 0

0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

w1

y =
⎧⎪⎪⎪⎪
⎩

1 0 0 0

0 0 1 0

⎫⎪⎪⎪⎪
⎭

x + w2

Fix R1 =

(
1 0
0 1

)
and design Kalman filters for different R2
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Example 2 – Tracking of a moving object

Simulation of Kalman filter with initial condition x̂ =
(
0 0 0 0

)T

-1.5 -1 -0.5 0 0.5 1 1.5

p
1

-1.5

-1

-0.5

0

0.5

1

1.5

p
2

Estimated position

Larger R2 gives better noise rejection but slower tracking
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Noise shaping

The Kalman filter can be tuned in the frequency domain by

extending the plant model with filters that shape the process

disturbance and measurement noise spectra:

u

w1 w2

yz
ΣΣ

H1(s)

P(s)

H2(s)

Process disturbance frequencies are modeled via H1

Kalman filter gets higher gain where |H1(iω)| is large

Measurement disturbance frequencies are modeled via H2

Kalman filter gets smaller gain where |H2(iω)| is large
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Integral action via noise shaping

Extend the plant model with an integral disturbance acting on the

process input. (Extra state is observable but not controllable.)

u

w1

xi
y

Σ P(s)

1

s

The resulting Kalman filter (and hence also the observer-based

controller) will include an integrator. Extended feedback law:

u(t) = −Lx̂(t) − x̂i(t)
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Lecture 10 – summary

Observer-based feedback

The Kalman filter – an optimal observer

Noise shaping

Next lecture: LQG:

LQG by separation (LQ regulator + Kalman filter)

Robustness of LQG?

How to choose the design weights Q and R?

How to handle reference signals?

Examples
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