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Course Outline

L1–L5 Specifications, models and loop-shaping by hand

L6–L8 Limitations on achievable performance

L9–L11 Controller optimization: analytic approach

9 Linear-quadratic control

10 Kalman filtering

11 LQG control

L12–L14 Controller optimization: numerical approach

L15 Course review
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Lecture 9 – Outline

Linear-quadratic control:

1 Dynamic programming

2 The Riccati equation

3 Optimal state feedback

4 Stability and robustness
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A general optimization setup

Plant

Controller

✛ ✛

✛

✲

controller outputs u

performance outputs z

controller inputs y

exogenous inputs w

General objective: find a controller that optimizes the closed-loop

system Gzw(s).
Lectures 9–11: Problems with analytic solutions

Lectures 12–14: Problems with numeric solutions

Automatic Control LTH, 2018 Lecture 9 FRTN10 Multivariable Control



Today’s problem: Optimal state feedback

Plant

Controller

✛ ✛

✛

✲

u

z x0

state x

Optimization problem:

minimize J =

∫ ∞

0

|z |2 dt =

∫ ∞

0



x(t)
u(t)



T 

Q1 Q12

QT

12
Q2





x(t)
u(t)


dt

subject to Ûx(t) = Ax(t) + Bu(t), x(0) = x0

Q =



Q1 Q12

QT

12
Q2



> 0 is a symmetric matrix (design parameter)
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Why linear-quadratic control?

Simple, analytic solution

Quadratic cost functions give linear state feedback control laws

Always stabilizing

Works for MIMO systems

Guaranteed robustness (in the state feedback case)

Foundation for more advanced methods like model-predictive

control (MPC)
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Dynamic programming: example

Determine u0 and u1 if the objective is to minimize

x2

1
+ x2

2
+ u2

0
+ u2

1

when

x1 = x0 + u0

x2 = x1 + u1

Hint: Go backwards in time.
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Dynamic programming: example

Break the problem into smaller parts that can be solved

sequentially:

min
u0,u1

{
x2

1
+ x2

2
+ u2

0
+ u2

1

}
= min

u0

{
x2

1
+ u2

0
+min

u1

{
x2

2
+ u2

1

}
(x1)

︸                 ︷︷                 ︸
J1(x1)

}
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Dynamic programming: example

Break the problem into smaller parts that can be solved

sequentially:

min
u0,u1

{
x2

1
+ x2

2
+ u2

0
+ u2

1

}
= min

u0

{
x2

1
+ u2

0
+min

u1

{
x2

2
+ u2

1

}
(x1)

︸                 ︷︷                 ︸
J1(x1)

}

J1(x1) = min
u1

{
(x1+u1)2 + u2

1

}
= min

u1

{
2
(
u1+

1

2
x1

)2
+

1

2
x2

1

}

=
1

2
x2

1
with minimum attained for u1 = − 1

2
x1

J0(x0) = min
u0

{
(x0+u0)2 + u2

0
+ J1(x0+u0)

}
= min

u0

{
5

2

(
u0+

3

5
x0

)2
+

3

5
x2

0

}

=
3

5
x2

0
with minimum attained for u0 = − 3

5
x0
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Quadratic optimal cost

It can be shown that the optimal cost on a time interval [t, ∞) is
quadratic:

min
u[t,∞)

∫ ∞

t




x(τ)
u(τ)




T

Q



x(τ)
u(τ)




dτ = xT(t)Sx(t), S = ST > 0

when

Ûx(t) = Ax(t) + Bu(t)

and

Q =



Q1 Q12

QT

12
Q2



> 0
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Dynamic programming, Richard E. Bellman, 1957

t t + ǫ T

Bellman’s principle of optimality:

An optimal trajectory on the time in-

terval [t, T] must be optimal also on

each of the subintervals [t, t + ǫ] and
[t + ǫ, T].
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Dynamic programming for linear-quadratic control

For an infinitesimal time step of length ǫ ,

x(t + ǫ) = x(t) + (Ax(t) + Bu(t))ǫ as ǫ → 0
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Dynamic programming for linear-quadratic control

For an infinitesimal time step of length ǫ ,

x(t + ǫ) = x(t) + (Ax(t) + Bu(t))ǫ as ǫ → 0

Invoking the principle of optimality for [t, t + ǫ] and [t + ǫ,∞]:

xT (t)Sx(t) = min
u[t,∞)

∫ ∞

t



x(τ)
u(τ)



T

Q


x(τ)
u(τ)


dτ

= min
u[t,∞)

{



x(t)
u(t)




T

Q



x(t)
u(t)



ǫ +

∫ ∞

t+ǫ




x(τ)
u(τ)




T

Q



x(τ)
u(τ)




dτ

}

= min
u(t)

{(
xT (t)Q1x(t) + 2xT (t)Q12u(t) + uT (t)Q2u(t)

)
ǫ

+

[
x(t) + (Ax(t) + Bu(t))ǫ

]T
S

[
x(t) + (Ax(t) + Bu(t))ǫ

]}
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Bellman’s equation

From the previous slide:

xT (t)Sx(t) = min
u(t)

{(
xT (t)Q1x(t) + 2xT (t)Q12u(t) + uT (t)Q2u(t)

)
ǫ

+

[
x(t) + (Ax(t) + Bu(t))ǫ

]T
S

[
x(t) + (Ax(t) + Bu(t))ǫ

]}

Neglecting the ǫ2 terms gives Bellman’s equation:

0 = min
u(t)

{
xT (t)Q1x(t) + 2xT (t)Q12u(t) + uT (t)Q2u(t)

)

+2xT (t)S
(
Ax(t) + Bu(t)

)
}
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Completion of squares

Suppose Qu > 0. Then the quadratic form

xTQx x + 2xTQxuu + uTQuu

= (u +Q−1

u QT
xux)TQu(u +Q−1

u QT
xux) + xT(Qx − QxuQ−1

u QT
xu)x

is minimized by

u = −Q−1

u QT
xux

The minimum is

xT(Qx − QxuQ−1

u QT
xu)x
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The Riccati equation

Completion of squares in Bellman’s equation gives

0 = min
ut

{(
xTt Q1xt + 2xTt Q12ut + uTt Q2ut

)
+ 2xTt S

(
Axt + But

)}

= min
ut

{
xTt [Q1 + AT S + SA]xt + 2xTt [Q12 + SB]ut + uTt Q2ut

}

= xTt

(
Q1 + AT S + SA − (SB +Q12)Q−1

2
(SB +Q12)T

)
xt

with minimum attained for

ut = −Q−1

2
(SB +Q12)T xt
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The Riccati equation

Completion of squares in Bellman’s equation gives

0 = min
ut

{(
xTt Q1xt + 2xTt Q12ut + uTt Q2ut

)
+ 2xTt S

(
Axt + But

)}

= min
ut

{
xTt [Q1 + AT S + SA]xt + 2xTt [Q12 + SB]ut + uTt Q2ut

}

= xTt

(
Q1 + AT S + SA − (SB +Q12)Q−1

2
(SB +Q12)T

)
xt

with minimum attained for

ut = −Q−1

2
(SB +Q12)T xt

The equation

0 = Q1 + AT S + SA − (SB +Q12)Q−1

2
(SB +Q12)T

is called the algebraic Riccati equation

Automatic Control LTH, 2018 Lecture 9 FRTN10 Multivariable Control



Jocopo Francesco Riccati, 1676–1754
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Algebraic Riccati equations in Matlab

care Solve continuous-time algebraic Riccati equations.

[X,L,G] = care(A,B,Q,R,S,E) computes the unique stabilizing

solution X of the continuous-time algebraic Riccati equation

-1

A'XE + E'XA - (E'XB + S)R (B'XE + S') + Q = 0 .

When omitted, R, S and E are set to the default values R=I,

S=0, and E=I. Beside the solution X, care also returns the

gain matrix

-1

G = R (B'XE + S')

and the vector L of closed-loop eigenvalues (i.e.,

EIG(A-B*G,E)).
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Linear-quadratic optimal control

Control problem:

Minimize J =

∫ ∞

0

(
xT(t)Q1x(t) + 2xT(t)Q12u(t) + uT(t)Q2u(t)

)
dt

subject to Ûx(t) = Ax(t) + Bu(t), x(0) = x0

Solution: Assume (A, B) stabilizable (i.e., any unstable modes are

controllable). Then there is a unique S = ST > 0 solving the

algebraic Riccati equation

0 = Q1 + AT S + SA − (SB +Q12)Q−1

2
(SB +Q12)T

The optimal control law is u = −Lx with L = Q−1

2
(SB +Q12)T .

The optimal cost is J∗ = xT
0

Sx0.
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Remarks

Note that the optimal control law does not depend on x0.

The optimal feedback gain L is static since we are solving an

infinite-horizon problem.

(LQ theory can also be applied to finite-horizon problems and problems

with time-varying system matrices. We then obtain a Riccati differential

equation for S(t) and a time-varying state feedback, u(t) = −L(t)x(t))

Automatic Control LTH, 2018 Lecture 9 FRTN10 Multivariable Control



Example: Control of an integrator

For Ûx(t) = u(t), x(0) = x0,

Minimize J =

∫ ∞

0

{
x(t)2 + ρu(t)2

}
dt

Riccati equation 0 = 1 − S2/ρ ⇒ S =
√
ρ

Controller L = S/ρ = 1/√ρ ⇒ u = −x/√ρ

Closed loop system Ûx = −x/√ρ ⇒ x = x0e−t/
√
ρ

Optimal cost J∗ = xT
0

Sx0 = x2

0

√
ρ

What values of ρ give the fastest response? Why?
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Solving the LQ problem in Matlab

lqr Linear-quadratic regulator design for state space systems

[K,S,E] = lqr(SYS,Q,R,N) calculates the optimal gain matrix K

such that:

* For a continuous-time state-space model SYS, the state-

feedback law u = -Kx minimizes the cost function

J = Integral {x'Qx + u'Ru + 2*x'Nu} dt

subject to the system dynamics dx/dt = Ax + Bu

The matrix N is set to zero when omitted. Also returned are

the solution S of the associated algebraic Riccati equation

and the closed-loop eigenvalues E = EIG(A-B*K).
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Example – Double integrator

A =



0 1

0 0




B =



0

1




Q1 =




1 0

0 0




Q2 = ρ x(0) =



1

0




States (full) and input (dotted) for ρ = 0.01, ρ = 0.1:

0 5 10
−4

−2

0

2

4

0 5 10
−4

−2

0

2

4
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Example – Double integrator

States (full) and inputs (dotted) for ρ = 1, ρ = 10:

0 5 10
−4

−2

0

2

4

0 5 10
−4

−2

0

2

4

Closed loop poles:

s = 2
−1/2
ρ
−1/4(−1 ± i)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
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Stochastic interpretation of LQ control

Plant

Controller

✛ ✛

✛

✲

u

z white noise w

state x

Minimize J = E |z |2 = E
{

xTQ1x + 2xTQ12u + uTQ2u
}

subject to Ûx(t) = Ax(t) + Bu(t) + w(t)

where w is white noise with intensity R. Same Riccati equation and

solution (S, L) as in the deterministic case. The optimal cost is

J∗ = E xT Sx = trace(SR)
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Stability of the closed-loop system

Assume that

Q =


Q1 Q12

QT

12
Q2


> 0

and that there exists a solution S > 0 to the algebraic Riccati

equation. Then the optimal controller u(t) = −Lx(t) gives an
asymptotically stable closed-loop system Ûx(t) = (A − BL)x(t).
Proof:

d

dt
xT(t)Sx(t) = 2xT S Ûx = 2xT S(Ax + Bu)

= −
(
xTQ1x + 2xTQ12u + uTQ2u

)
< 0 for x(t) , 0

Hence xT(t)Sx(t) is decreasing and tends to zero as t → ∞.
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Robustness of optimal state feedback

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

−4

−3

−2

−1

0

1

2

3

4

Nyquist Diagram

Real Axis

Im
a
g
in

a
ry

 A
x
is

The distance from the loop gain L(iωI − A)−1B to −1 is never

smaller than 1. This is always true(!) when Q1 > 0, Q12 = 0 and

Q2 > 0 is scalar. The phase margin is at least 60
◦ and the gain

margin is infinite!

[For proof, see G&L Section 9.4]Automatic Control LTH, 2018 Lecture 9 FRTN10 Multivariable Control



Lecture 9 – summary

We specify what “optimal control” means using a quadratic

cost function.

Solving an algebraic Riccati equation gives the optimal state

feedback law u = −Lx:

0 = Q1 + AT S + SA − (SB +Q12)Q−1

2
(SB +Q12)T ⇒ S

L = Q−1

2
(SB +Q12)−1

The LQ controller has remarkable robustness properties.
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