

2

3

4

Transfer functions for MIMO systems

Automatic Control LTH, 2018

Limitations due to RHP zeros

Decentralized control

Decoupling

Typical process control system

Figure 13-6. Automatic control system for Perco motor fuel alkylation process.

Automatic Control LTH, 2018

ntrol LTH, 2018 Lecture 8 FRTN10 Multivariable Control

Example system: Distillation column

Lecture 8 FRTN10 Multivariable Control

Example system: Distillation column

Outputs:	Inputs:
$y_1 = top draw composition$	$u_1 = top draw flowrate$
y_2 = side draw composition	$u_2 = side draw flowrate$
	$u_3 =$ bottom temperature control input

Linear first-order plus deadtime (FOPDT) model:

Overhead vapor Vт Condense Condenser holdup (____ M____ Distillate ?efluy D, yn N-1 Feed F, Z_F Boilun Rehniler holdup Bottom product B, x_B

Raw oil inserted at bottom; different petro-chemical subcomponents extracted

Multivariable transfer functions

P and *C* are matrices and all signals are vectors – order matters!

$$Z = PCR + PD - PC(N + Z)$$

$$(I + PC)Z = PCR + PD - PCN$$

$$Z = \underbrace{(I + PC)^{-1}PC}_{G_{zr}=T} R + \underbrace{(I + PC)^{-1}P}_{G_{zd}} D \underbrace{-(I + PC)^{-1}PC}_{G_{zn}} N$$

Sensitivity functions for MIMO systems

Output sensitivity function:

$$(I + PC)^{-1} = S$$

Input sensitivity function:

 $(I + CP)^{-1}$

Mini-problem:

Find the sensitivity functions above in the block diagram on the previous slide.

Lecture 7 – Outline

Lecture 8 FRTN10 Multivariable Control

Some useful identities

Lecture 8 FRTN10 Multivariable Control

Notice the following identities:

Automatic Control LTH, 2018

(i)
$$[I + PC]^{-1}P = P[I + CP]^{-1}$$

(ii) $C[I + PC]^{-1} = [I + CP]^{-1}C$
(iii) $T = P[I + CP]^{-1}C = PC[I + PC]^{-1} = [I + PC]^{-1}PC$
(iv) $S + T = I$

Proof:

The first equality follows by multiplication on both sides with [I + PC] from the left and with [I + CP] from the right.

Left: $[I + PC][I + PC]^{-1}P[I + CP] = I \cdot [P + PCP] = [I + PC]P$ Right: $[I + PC]P[I + CP]^{-1}[I + CP] = [I + PC]P \cdot I = [I + PC]P$

Automatic Control LTH, 2018

THEOREM:

RHP.

Assume that the MIMO system P(s) has a transmission zero z in the

 $\|W_S S\|_{\infty} = \sup_{\omega} \overline{\sigma} (W_S(i\omega)S(i\omega)) \le 1$

 $|W_S(z)| \leq 1$

Let $S(s) = [I + P(s)C(s)]^{-1}$ and let $W_S(s)$ be a scalar, stable and minimum phase transfer function. Then the specification

Example: Control of MIMO system with RHP zero

Recall the following process from Lecture 6:

$$P(s) = \begin{bmatrix} \frac{2}{s+1} & \frac{3}{s+2} \\ \frac{1}{s+1} & \frac{1}{s+1} \end{bmatrix}$$

Computing the determinant

$$\det P(s) = \frac{2}{(s+1)^2} - \frac{3}{(s+2)(s+1)} = \frac{-s+1}{(s+1)^2(s+2)}$$

shows that the process has a RHP zero in 1, which will limit the achievable performance.

[See lecture notes for details of the following slides]

Automatic Control LTH, 2018

Example – Controller 1

Lecture 8 FRTN10 Multivariable Control

The controller

is possible to meet only if

$$C_1(s) = \begin{bmatrix} \frac{K_1(s+1)}{s} & -\frac{3K_2(s+0.5)}{s(s+2)} \\ -\frac{K_1(s+1)}{s} & \frac{2K_2(s+0.5)}{s(s+1)} \end{bmatrix}$$

gives the diagonal loop transfer matrix

Automatic Control LTH, 2018

$$P(s)C_1(s) = \begin{bmatrix} \frac{K_1(-s+1)}{s(s+2)} & 0\\ 0 & \frac{K_2(s+0.5)(-s+1)}{s(s+1)(s+2)} \end{bmatrix}$$

The system is decoupled into two scalar loops, each with an unstable zero at s = 1 that limits the bandwidth.

Closed-loop step responses from (r_1, r_2) to (y_1, y_2) for $K_1 = K_2 = 1$ are shown on next slide.

Step responses using Controller 1

Lecture 8 FRTN10 Multivariable Control

No cross-coupling, but RHP zero shows up in both y_1 and y_2 .

10

Singular Values (abs)

10⁻²

10⁻¹

 $W_S(s) = \frac{s+1.01}{2s}$, impossible to meet due to RHP zero

Sensitivity sigma plot using Controller 1

Singular Values

Singular values $|W_{S}^{-1}|$

10¹

 10^{2}

Example – Controller 2

The controller

$$C_{2}(s) = \begin{bmatrix} \frac{K_{1}(s+1)}{s} & K_{2} \\ -\frac{K_{1}(s+1)}{s} & K_{2} \end{bmatrix}$$

gives the triangular loop transfer matrix

(

$$P(s)C_2(s) = \begin{bmatrix} \frac{K_1(-s+1)}{s(s+2)} & \frac{K_2(5s+7)}{(s+2)(s+1)} \\ 0 & \frac{2K_2}{s+1} \end{bmatrix}$$

Now the decoupling is only partial: Output y_2 is not affected by r_1 . Moreover, no RHP zero limits the rate of response in y_2 !

The closed-loop step responses for $K_1 = 1$, $K_2 = 10$ are shown on next slide.

Automatic Control LTH, 2018 Lecture 8 FRTN10 Multivariable Control

10⁰

Frequency (rad/s)

The RHP zero does not prevent a fast y_2 response to r_2 but at the price of a simultaneous undesired response in y_1 .

Automatic Control LTH, 2018 Lecture 8 FRTN10 Multivariable Control

Sensitivity sigma plot using Controller 2

 $W_S(s) = \frac{s+1.01}{2s}$, impossible to meet due to RHP zero

The controller

Example – Controller 3

 $C_3(s) = \begin{bmatrix} K_1 & \frac{-3K_2(s+0.5)}{s(s+2)} \\ K_1 & \frac{2K_2(s+0.5)}{s(s+1)} \end{bmatrix}$

 $P(s)C_3(s) = \begin{bmatrix} \frac{K_1(5s+7)}{(s+1)(s+2)} & 0\\ \frac{2K_1}{s+1} & \frac{K_2(-1+s)(s+0.5)}{s(s+1)^2(s+2)} \end{bmatrix}$

In this case y_1 is decoupled from r_2 and can respond arbitrarily fast

for high values of K_1 , at the expense of bad behavior in y_2 . Step

responses for $K_1 = 10$, $K_2 = 1$ are shown on next slide.

Automatic Control LTH, 2018

gives the triangular loop transfer matrix

Step responses using Controller 3

The RHP zero does not prevent a fast y_1 response to r_1 but at the price of a simultaneous undesired response in y_2 .

Sensitivity sigma plot using Controller 3

Lecture 8 FRTN10 Multivariable Control

 $W_S(s) = \frac{s+1.01}{2s}$, impossible to meet due to RHP zero

Automatic Control LTH, 2018 Lecture 8 FRTN10 Multivariable Control

Example – summary

To summarize, the example shows that even though a **multivariable RHP zero always gives a performance limitation**, it is possible to influence where the effects should show up.

Decentralized control

Transfer functions for MIMO systems

2 Limitations due to RHP zeros

3 Decentralized control

4 Decoupling

Background in process control:

- A few important variables were controlled using the simple loop paradigm: one sensor, one actuator, one controller
- As more loops were added, interaction was handled using feedforward, cascade and midrange control, selectors, etc.
- Not always obvious how to associate sensors and actuators the pairing problem

Computer control and state-space design methods eventually led to centralized MIMO control schemes (LQG, MPC, etc.)

Automatic Control LTH, 2018 Lecture 8 FRTN10 Multivariable Control

Interaction between simple loops

Rosenbrock's example

 $P(s) = \begin{vmatrix} \frac{1}{(s+1)^2} & \frac{2}{(s+1)^2} \\ \frac{1}{(s+1)^2} & \frac{1}{(s+1)^2} \end{vmatrix}$

Lecture 8 FRTN10 Multivariable Control

 $Y_1(s) = P_{11}(s)U_1(s) + P_{12}U_2(s)$ $Y_2(s) = P_{21}(s)U_1(s) + P_{22}U_2(s),$

What happens when the controllers are tuned individually (C_1 for P_{11} and C_2 for P_{22}), ignoring the cross-couplings (P_{12} and P_{21})?

Very benign subsystems, no fundamental limitations.

Automatic Control LTH. 2018

Rosenbrock's example with two SISO controllers

Bristol's Relative Gain Array (RGA)

- $U_1 = \left(1 + \frac{1}{s}\right)(R_1 Y_1)$
- $U_2 = -K_2Y_2$ with $K_2 = 0$, 0.8, and 1.6.

The second controller has a major impact on the first loop! Gain reversal in $u_1 \rightarrow y_1$ when $K_2 = 1.6$.

Automatic Control LTH, 2018 Lecture 8 FRTN10 Multivariable Control

Calculation of RGA

Assume the input-output relation y = Gu, where G is square and invertible.

Open loop: Assume $u_i \neq 0$ and all other inputs zero. Then

$$y_k = G_{kj} u_j$$

Closed loop: Assume $y_k \neq 0$ and that all other outputs are regulated to zero. Solving for the corresponding inputs gives

$$u_j = G_{jk}^{-1} y_k \quad \Leftrightarrow \quad y_k = \frac{1}{G_{jk}^{-1}} u_j$$

- A simple way of measuring interaction in MIMO systems
- Idea: Study how the gain between one input and one output changes when all other outputs are regulated:

relative gain = $\frac{\text{open-loop gain}}{\text{"closed-loop gain"}}$

• Often only the static gain P(0) is analyzed, but one could also look at for instance $P(i\omega_c)$ and other frequencies

Automatic Control LTH, 2018 Lecture 8 FRTN10 Multivariable Control

Calculation of RGA

Relative gain:

$$\lambda_{kj} = G_{kj} \cdot G_{jk}^{-1}$$

All elements of the relative gain array (matrix) can be computed in one go as

$$\Lambda = \operatorname{RGA}(G) = G \cdot (G^{-1})^T$$

where .* denotes element-wise (Hadamard/Schur) multiplication

Matlab: RGA = G.*inv(G).'

Interpretation of RGA

- RGA is dimensionless; not affected by choice of units or scaling.
- RGA is normalized: Rows and columns of Λ sum to 1.
- Diagonal or triangular plant gives $\Lambda = I$.

- $\lambda_{kj} \approx 1$ means small closed-loop interaction. Suitable to pair output k with input j.
- $\lambda_{kj} < 0$ corresponds to a sign reversal due to feedback and a risk of instability if output k is paired with input j avoid!
- $0 < \lambda_{kj} < 1$ means that the closed-loop gain is larger than the open-loop gain; the opposite is true for $\lambda_{kj} > 1$.

Rule of thumb: Pair the outputs and inputs so that corresponding relative gains are positive and as close to 1 as possible.

Automatic Control LTH, 2018 Lecture 8 FRTN10 Multivariable Control

RGA of Rosenbrock's example

Analysis of static gain:

$$P(0) = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, \quad P^{-1}(0) = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$$
$$\Lambda = P(0) \cdot (P^{-1}(0))^T = \begin{pmatrix} -1 & 2 \\ 2 & -1 \end{pmatrix}$$

- Negative value of λ_{11} indicates the problematic sign reversal found previously when y_1 was controlled using u_1 .
- Better to use reverse pairing, i.e. let u₂ control y₁ and vice versa.

Automatic Control LTH, 2018 Lecture 8 FRTN10 Multivariable Control

Rosenbrock's example with reverse pairing

The RGA can also be computed for a general gain matrix G:

 $\operatorname{RGA}(G) = G \cdot * (G^{\dagger})^T$

Here, † denotes the pseudo-inverse (Matlab: pinv)

Example: Distillation column:

$$P(0) = \begin{pmatrix} 4.0 & 1.8 & 5.9 \\ 5.4 & 5.7 & 6.9 \end{pmatrix}, \quad \text{RGA}(P(0)) = \begin{pmatrix} 0.28 & -0.61 & 1.33 \\ 0.01 & 1.58 & -0.59 \end{pmatrix}$$

Suggested pairing for decentralized control: y_1 — u_3 , y_2 — u_2 , u_1 unused

4 Decoupling

Many variants/names:

- Input/conventional/feedforward decoupling: $\tilde{P} = PW_1$, $W_2 = I$
- Output/inverse/feedback decoupling: $\tilde{P} = W_2 P$, $W_1 = I$

 W_1 and W_2 can be static or dynamic systems

Example: Static input decoupling: $W_1 = P^{-1}(0)$, $W_2 = I$

Idea: Select decoupling filters W_1 and W_2 so that the controller sees a diagonal plant:

$$\tilde{P} = W_2 P W_1 = \begin{bmatrix} * & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & * \end{bmatrix}$$

Then we can use a decentralized controller C with the same diagonal structure.

Lab 2: The quadruple tank

 $1 - \gamma_1$

 γ_1

Pump 1 (BP)

 u_1

Tank 3

(A1)

Tank 1 (A2) y1

*y*₃

 $1 - \gamma_2$

*y*₄

 γ_2

 $y_2 \downarrow Pump 2 (AP)$

 u_2

Tank 4

(B1)

Tank 2

(B2)

Summary

- Multivariable RHP zeros \Rightarrow limitations
 - Don't forget process redesign
- Decentralized control one controller per controlled variable
 - RGA gives insight for input-output pairing
- Decoupling
 - Simpler system SISO design, tuning and operation can be used

Automatic Control LTH, 2018 Lecture 8 FRTN10 Multivariable Control

Automatic Control LTH, 2018 Lecture 8 FRTN10 Multivariable Control