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Typical process control system
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Example system: Distillation column

Raw oil inserted at bottom; different petro-chemical subcomponents extracted
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Example system: Distillation column

Outputs: Inputs:

y1 = top draw composition u 1 = top draw flowrate

y2 = side draw composition u 2 = side draw flowrate

u 3 = bottom temperature control input

Linear first-order plus deadtime (FOPDT) model:

[
Y1(s)

Y2(s)

]

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4

50s + 1
e−27s 1.8

60s + 1
e−28s 5.9

50s + 1
e−27s

5.4

50s + 1
e−18s 5.7

60s + 1
e−14s 6.9

40s + 1
e−15s

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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⎡
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U1(s)

U2(s)

U3(s)

⎤
⎥
⎥
⎥
⎥
⎦
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Multivariable transfer functions
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P and C are matrices and all signals are vectors – order matters!

Z = PCR + PD − PC
(
N + Z

)

(
I + PC

)
Z = PCR + PD − PCN

Z =
(
I + PC

)−1
PC

︸!!!!!!!!!!!!︷︷!!!!!!!!!!!!︸
Gzr=T

R +
(
I + PC

)−1
P
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Gzd

D −
(
I + PC

)−1
PC

︸!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!︸
Gzn

N
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Sensitivity functions for MIMO systems

Output sensitivity function:

(I + PC)−1
= S

Input sensitivity function:

(I + CP)−1

Mini-problem:

Find the sensitivity functions above in the block diagram on

the previous slide.
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Some useful identities

Notice the following identities:

(i) [I + PC]−1P = P[I + CP]−1

(ii) C[I + PC]−1
= [I + CP]−1C

(iii) T = P[I + CP]−1C = PC[I + PC]−1
= [I + PC]−1PC

(iv) S+ T = I

Proof:

The first equality follows by multiplication on both sides with [I + PC]
from the left and with [I + CP] from the right.

Left: [I + PC][I + PC]−1P[I + CP] = I · [P + PCP] = [I + PC]P

Right: [I + PC]P[I + CP]−1[I + CP] = [I + PC]P · I = [I + PC]P
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Hard limitations from RHP zeros

Theorem:

Assume that the MIMO system P(s) has a transmission zero z in the

RHP.

Let S(s) = [I + P(s)C(s)]−1 and let WS(s) be a scalar, stable and

minimum phase transfer function. Then the specification

∥WSS∥∞ = sup
ω

σ
(
WS(iω)S(iω)

)
≤1

is possible to meet only if

|WS(z)| ≤1
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Example: Control of MIMO system with RHP zero

Recall the following process from Lecture 6:

P(s) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2

s + 1

3

s + 2
1

s + 1

1

s + 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Computing the determinant

det P(s) =
2

(s + 1)2
−

3

(s + 2)(s + 1)
=

−s + 1

(s + 1)2(s + 2)

shows that the process has a RHP zero in 1, which will limit the

achievable performance.

[See lecture notes for details of the following slides]
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Example – Controller 1

The controller

C1(s) =

[
K1(s+1)

s − 3K2(s+0.5)
s(s+2)

−K1(s+1)
s

2K2(s+0.5)
s(s+1)

]

gives the diagonal loop transfer matrix

P(s)C1(s) =

[
K1(−s+1)
s(s+2) 0

0
K2(s+0.5)(−s+1)

s(s+1)(s+2)

]

The system is decoupled into two scalar loops, each with an

unstable zero at s = 1 that limits the bandwidth.

Closed-loop step responses from (r1, r2) to (y1, y2) for K1 = K2 = 1

are shown on next slide.
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Step responses using Controller 1
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No cross-coupling, but RHP zero shows up in both y1 and y2.
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Sensitivity sigma plot using Controller 1
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Example – Controller 2

The controller

C2(s) =

[
K1(s+1)

s K2

−K1(s+1)
s K2

]

gives the triangular loop transfer matrix

P(s)C2(s) =

[
K1(−s+1)
s(s+2)

K2(5s+7)
(s+2)(s+1)

0 2K2

s+1

]

Now the decoupling is only partial: Output y2 is not affected by r1.

Moreover, no RHP zero limits the rate of response in y2!

The closed-loop step responses for K1 = 1, K2 = 10 are shown on

next slide.
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Step responses using Controller 2
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The RHP zero does not prevent a fast y2 response to r2 but at the price of

a simultaneous undesired response in y1.
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Sensitivity sigma plot using Controller 2
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Example – Controller 3

The controller

C3(s) =

[
K1

−3K2(s+0.5)
s(s+2)

K1
2K2(s+0.5)

s(s+1)

]

gives the triangular loop transfer matrix

P(s)C3(s) =

[
K1(5s+7)
(s+1)(s+2) 0

2K1

s+1
K2(−1+s)(s+0.5)

s(s+1)2(s+2)

]

In this case y1 is decoupled from r2 and can respond arbitrarily fast

for high values of K1, at the expense of bad behavior in y2. Step

responses for K1 = 10, K2 = 1 are shown on next slide.
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Step responses using Controller 3
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The RHP zero does not prevent a fast y1 response to r1 but at the price of

a simultaneous undesired response in y2.
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Sensitivity sigma plot using Controller 3

10-2 10-1 100 101 102 103
10-2

10-1

100

101

Singular values

Singular Values

Frequency (rad/s)

S
in

g
u

la
r 

V
a

lu
e

s 
(a

b
s)

|W−1
S

|

WS(s) =
s+1.01

2s , impossible to meet due to RHP zero

Automatic Control LTH, 2018 Lecture 8 FRTN10 Multivariable Control

Example – summary

To summarize, the example shows that even though a

multivariable RHP zero always gives a performance

limitation, it is possible to influence where the effects should

show up.

Automatic Control LTH, 2018 Lecture 8 FRTN10 Multivariable Control



Lecture 7 – Outline

1 Transfer functions for MIMO systems

2 Limitations due to RHP zeros

3 Decentralized control

4 Decoupling

Automatic Control LTH, 2018 Lecture 8 FRTN10 Multivariable Control

Decentralized control

Background in process control:

A few important variables were controlled using the simple

loop paradigm: one sensor, one actuator, one controller

As more loops were added, interaction was handled using

feedforward, cascade and midrange control, selectors, etc.

Not always obvious how to associate sensors and actuators –

the pairing problem

Computer control and state-space design methods eventually led

to centralized MIMO control schemes (LQG, MPC, etc.)
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Interaction between simple loops

r1

r2

u 1

u 2

y1

y2

C1

C2

Process

Y1(s) = P11(s)U1(s) + P12U2(s)

Y2(s) = P21(s)U1(s) + P22U2(s),

What happens when the controllers are tuned individually (C1 for

P11 and C2 for P22), ignoring the cross-couplings (P12 and P21)?
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Rosenbrock’s example

P(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

1

(s + 1)2
2

(s + 1)2

1

(s + 1)2
1

(s + 1)2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

Very benign subsystems, no fundamental limitations.
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Rosenbrock’s example with two SISO controllers

U1 =

(
1 + 1

s

)
(R1 − Y1)

U2 = −K2Y2 with K2 = 0, 0.8, and 1.6.
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The second controller has a major impact on the first loop! Gain

reversal in u 1 → y1 when K2 = 1.6.
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Bristol’s Relative Gain Array (RGA)

Edgar H. Bristol, "On a new measure of interaction for

multivariable process control" [IEEE TAC 11(1967) pp. 133–135]

A simple way of measuring interaction in MIMO systems

Idea: Study how the gain between one input and one output

changes when all other outputs are regulated:

relative gain =
open-loop gain

“closed-loop gain”

Often only the static gain P(0) is analyzed, but one could also

look at for instance P(iωc) and other frequencies
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Calculation of RGA

Assume the input-output relation y = Gu , where G is square and

invertible.

Open loop: Assume u j ! 0 and all other inputs zero. Then

yk = Gk ju j

Closed loop: Assume yk ! 0 and that all other outputs are

regulated to zero. Solving for the corresponding inputs gives

u j = G−1
jk yk ⇔ yk =

1

G−1
jk

u j
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Calculation of RGA

Relative gain:

λk j = Gk j · G−1
jk

All elements of the relative gain array (matrix) can be computed in

one go as

Λ = RGA(G) = G .∗ (G−1)T

where .∗ denotes element-wise (Hadamard/Schur) multiplication

Matlab: RGA = G.*inv(G).’
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Properties of RGA

RGA is dimensionless; not affected by choice of units or

scaling.

RGA is normalized: Rows and columns of Λ sum to 1.

Diagonal or triangular plant gives Λ = I.
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Interpretation of RGA

λk j ≈1 means small closed-loop interaction. Suitable to pair

output k with input j.

λk j < 0 corresponds to a sign reversal due to feedback and a

risk of instability if output k is paired with input j – avoid!

0 < λk j < 1 means that the closed-loop gain is larger than the

open-loop gain; the opposite is true for λk j > 1.

Rule of thumb: Pair the outputs and inputs so that corresponding

relative gains are positive and as close to 1 as possible.
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RGA of Rosenbrock’s example

Analysis of static gain:

P(0) =
⎧⎪⎪⎪⎪
⎩

1 2

1 1

⎫⎪⎪⎪⎪
⎭
, P−1(0) =

⎧⎪⎪⎪⎪
⎩

−1 2

1 −1

⎫⎪⎪⎪⎪
⎭

Λ = P(0) .∗ (P−1(0))T =
⎧⎪⎪⎪⎪
⎩

−1 2

2 −1

⎫⎪⎪⎪⎪
⎭

Negative value of λ11 indicates the problematic sign reversal

found previously when y1 was controlled using u 1.

Better to use reverse pairing, i.e. let u 2 control y1 and vice

versa.
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Rosenbrock’s example with reverse pairing
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(R1 − Y1)

U1 = −K2Y2 with K2 = 0, 0.8, and 1.6.
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RGA of non-square systems

The RGA can also be computed for a general gain matrix G:

RGA(G) = G .∗
(
G†)T

Here, † denotes the pseudo-inverse (Matlab: pinv)

Example: Distillation column:

P(0) =
⎧⎪⎪⎪⎪
⎩

4.0 1.8 5.9

5.4 5.7 6.9

⎫⎪⎪⎪⎪
⎭
, RGA(P(0)) =

⎧⎪⎪⎪⎪
⎩

0.28 −0.61 1.33

0.01 1.58 −0.59

⎫⎪⎪⎪⎪
⎭

Suggested pairing for decentralized control: y1—u 3, y2—u 2, u 1

unused
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Decoupling

yẽ uũer
Σ W2 C W1 P

−1

Idea: Select decoupling filters W1 and W2 so that the controller

sees a diagonal plant:

P̃ = W2PW1 =

⎡
⎢
⎢
⎢
⎢
⎣

∗ 0 0

0 ∗ 0

0 0 ∗

⎤
⎥
⎥
⎥
⎥
⎦

Then we can use a decentralized controller C with the same

diagonal structure.
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Decoupling

Many variants/names:

Input/conventional/feedforward decoupling: P̃ = PW1, W2 = I

Output/inverse/feedback decoupling: P̃ = W2P, W1 = I

W1 and W2 can be static or dynamic systems

Example: Static input decoupling: W1 = P−1(0), W2 = I
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Lab 2: The quadruple tank

u 1 u 2

y1 y2

y3 y4

γ1

1 − γ1

γ2

1 − γ2

Tank 1

(A2)

Tank 2

(B2)

Tank 3

(A1)

Tank 4

(B1)

Pump 1 (BP) Pump 2 (AP)
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Summary

All real MIMO systems are coupled

Multivariable RHP zeros ⇒ limitations

Don’t forget process redesign

Decentralized control – one controller per controlled variable

RGA gives insight for input–output pairing

Decoupling

Simpler system

SISO design, tuning and operation can be used
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