

Course Outline

- L1-L5 Specifications, models and loop-shaping by hand
- L6-L8 Limitations on achievable performance
 - Controllability/observability, multivariable poles/zeros
 - Fundamental limitations
 - Decentralized control
- L9-L11 Controller optimization: analytic approach
- L12-L14 Controller optimization: numerical approach
 - L15 Course review

Lecture 7 - Outline

- Bode's Relation and Bode's Integral
- Limitations from RHP poles/zeros and delays: insights from loop shaping
- 3 Limitations from RHP poles/zeros: Hard proofs

Limitations in control design

What we already know:

- Model uncertainty, measurement noise, and control signal limitations give upper limits on the achievable bandwidth
- S + T = 1, which implies

$$|S(i\omega)| + |T(i\omega)| \ge 1$$

 $||S(i\omega)| - |T(i\omega)|| \le 1$

 Some modes may be impossible to control or observe due to lack of controllability or observability

Limitations in control design

Fundamental limitations:

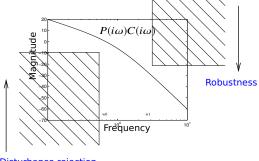
- Bode's Relation: amplitude and phase are coupled
- Bode's Integral: $|S(i\omega)|$ (and $|T(i\omega)|$) cannot be made small everywhere
- Limitations from non-minimum-phase elements:
 - unstable poles
 - right-half-plane (RHP) zeros
 - time delays

Lecture 7 - Outline

- Bode's Relation and Bode's Integral
- Limitations from RHP poles/zeros and delays: insights from loop shaping
- 3 Limitations from RHP poles/zeros: Hard proofs

Recall: Loop shaping

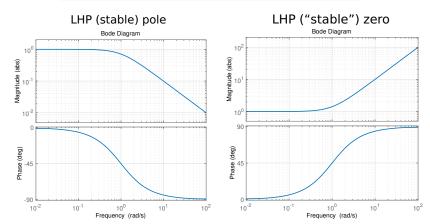
The loop transfer function L = PC should be made large at low frequencies and small at high frequencies:



Disturbance rejection

How quickly can we make the transition from high to low gain and still retain a good phase margin?

Recall: Amplitude and phase are coupled



If G(s) is minimum phase (no RHP poles/zeros or time delays) then

$$\arg G(i\omega) \approx \frac{\pi}{2} \frac{d \log |G(i\omega)|}{d \log \omega}$$

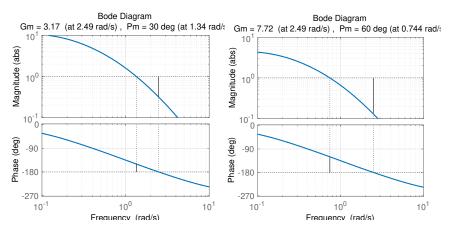
Bode's Relation

If G(s) is minimum phase, then

$$\arg G(i\omega) = \frac{2\omega}{\pi} \int_0^\infty \frac{\log|G(i\nu)| - \log|G(i\omega)|}{\nu^2 - \omega^2} d\nu$$
$$= \frac{1}{\pi} \int_0^\infty \frac{d\log|G(i\nu)|}{d\log\nu} \underbrace{\log\left|\frac{\nu + \omega}{\nu - \omega}\right|}_{\text{weighting function}} d\log\nu$$

Consequence for phase margin

For minimum-phase systems, to have a phase margin between 30° and 60° , the slope of the amplitude curve should be between approx. -1.67 and -1.33 at the cross-over frequency.



Bode's Integral – stable system

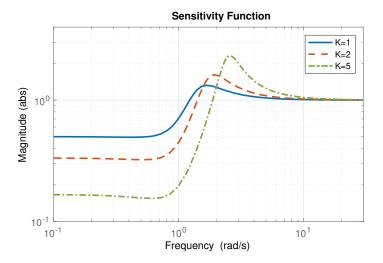
For a stable system with loop gain L(s) with relative degree ≥ 2 the following *conservation law* for the sensitivity function $S(s) = (1 + L(s))^{-1}$ holds:

$$\int_0^\infty \log |S(i\omega)| d\omega = 0$$

(Sometimes known as the "waterbed effect")

Example

P-control of $(s^2 + s + 1)^{-1}$



Bode's Integral - general case

For a system with loop gain with relative degree ≥ 2 and unstable poles p_1, \ldots, p_M , the following *conservation law* for the sensitivity function holds:

$$\int_0^\infty \log |S(i\omega)| d\omega = \pi \sum_{i=1}^M \operatorname{Re}(p_i)$$

(There exists a similar condition relating T(s) and RHP zeros, see the lecture notes.)

G. Stein: "Conservation of dirt!"

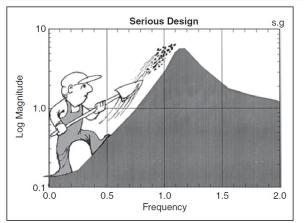


Figure 3. Sensitivity reduction at low frequency unavoidably leads to sensitivity increase at higher frequencies.

Picture from Gunter Stein's Bode Lecture (1985) "Respect the unstable". Reprint in *IEEE Control Systems Magazine*, Aug 2003.

Lecture 7 - Outline

- Bode's Relation and Bode's Integra
- Limitations from RHP poles/zeros and delays: insights from loop shaping
- 3 Limitations from RHP poles/zeros: Hard proofs

Non-minimum-phase systems

A transfer function G(s) can be factored as

$$G(s) = G_{mp}(s) G_{nmp}(s)$$

such that

- $G_{mp}(s)$ only contains minimum-phase elements
- $G_{nmp}(s)$ contains non-minimum-phase elements and has
 - unit magnitude: $|G_{nmp}(i\omega)| = 1$
 - negative phase: $\arg G_{nmp}(i\omega) < 0$

Non-minimum-phase elements

Pole in the right half-plane at *p*:

$$G_{nmp}(s) = \frac{s+p}{s-p}$$

Zero in the right half-plane at z:

$$G_{nmp}(s) = \frac{z - s}{s + z}$$

Time delay of length L:

$$G_{nmp}(s) = e^{-sL}$$

Insights from loop shaping

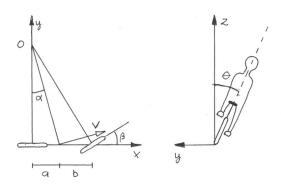
The minimum-phase part of the system can be shaped to our liking, to achieve a suitable cross-over frequency ω_c and phase margin φ_m . However,

- An RHP pole p decreases the phase by $> 90^{\circ}$ for $\omega < p$. To retain a reasonable phase margin, we must have $\omega_c > p$.
- An RHP zero z decreases the phase by $> 90^{\circ}$ for $\omega > z$. To retain a reasonable phase margin, we must have $\omega_c < z$.
- A time delay L decreases the phase by ωL . To retain a reasonable phase margin, we must have $\omega_{c} < \frac{\pi/2}{I} \approx \frac{1.6}{I}$.

Example: Rear-wheel steering bike

Bike example

A (linearized) torque balance can be written as



$$J\frac{d^2\theta}{dt^2} = mg\ell\theta + \frac{mV_0\ell}{b} \left(V_0\beta + a\frac{d\beta}{dt} \right)$$

Bike example, cont'd

$$J\frac{d^{2}\theta}{dt^{2}} = mg\ell\theta + \frac{mV_{0}\ell}{b} \left(V_{0}\beta + a\frac{d\beta}{dt} \right)$$

where the physical parameters have typical values as follows:

Mass: $m=70~\mathrm{kg}$ Distance rear-to-center: $a=0.3~\mathrm{m}$ Height over ground: $\ell=1.2~\mathrm{m}$ Distance center-to-front: $b=0.7~\mathrm{m}$ Moment of inertia: $J=120~\mathrm{kgm}^2$ Speed (reverse sign if rear-wheel steering): $V_0=5~\mathrm{ms}^{-1}$ Acceleration of gravity: $g=9.81~\mathrm{ms}^{-2}$

The transfer function from β to θ is

$$P(s) = \frac{mV_0\ell}{b} \frac{as + V_0}{Js^2 - mg\ell}$$

Bike example, cont'd

The system has an unstable pole at

$$p = \sqrt{\frac{mg\ell}{J}} \approx 2.5$$

The closed-loop system must be at least as fast as this. Moreover, the transfer function has a zero at

$$z = -\frac{V_0}{a} \approx -\frac{V_0}{0.3}$$

For the back-wheel steered bike we have the same pole but different sign of V_0 and the zero will thus be in the RHP!

An unstable pole-zero cancellation occurs for $V_0 \approx 0.75$ m/s.

Lecture 7 - Outline

- Bode's Relation and Bode's Integra
- Limitations from RHP poles/zeros and delays: insights from loop shaping
- 3 Limitations from RHP poles/zeros: Hard proofs

Sensitivity bounds from RHP poles/zeros

The sensitivity function must be 1 at a RHP zero z:

$$P(z) = 0$$
 \Rightarrow $S(z) := \frac{1}{1 + \underbrace{P(z)}_{0} C(z)} = 1$

Similarly, the complementary sensitivity function must be 1 at an unstable pole p:

$$P(p) = \infty$$
 \Rightarrow $T(p) := \frac{P(p)C(p)}{1 + P(p)C(p)} = 1$

The Maximum Modulus principle

Suppose that all poles of the rational function G(s) have negative real part. Then

$$\sup_{\omega \in \mathbb{R}} |G(i\omega)| \ge |G(s)|$$

for all s in the right half-plane.

Limits on specifications on S

THEOREM:

Given stable
$$W_S(s)$$
 and $S(s) = (1 + L(s))^{-1}$, the specification
$$\|W_S S\|_{\infty} \leq 1$$

can be met **only if** $|W_S(z)| \le 1$ for every RHP zero z of L(s).

Proof

$$||W_S S||_{\infty} = \sup_{\omega \in \mathbb{R}} |W_S(i\omega)S(i\omega)| \ge |W_S(s)S(s)|$$

for all s in RHP. For s=z, the right hand side becomes $|W_S(z)|$, which in turn gives the necessary condition above.

Limits on specifications on S

THEOREM:

Given stable $W_S(s)$ and $S(s) = (1 + L(s))^{-1}$, the specification

$$||W_S S||_{\infty} \le 1$$

can be met **only if** $|W_S(z)| \le 1$ for every RHP zero z of L(s).

Proof:

$$||W_S S||_{\infty} = \sup_{\omega \in \mathbb{R}} |W_S(i\omega)S(i\omega)| \ge |W_S(s)S(s)|$$

for all s in RHP. For s=z, the right hand side becomes $|W_S(z)|$, which in turn gives the necessary condition above.

Limits on specifications on T

THEOREM:

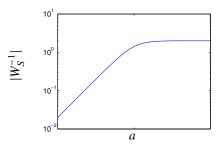
Given stable
$$W_T(s)$$
 and $T(s)=(1+L(s))^{-1}L(s)$, the specification
$$\|W_TT\|_{\infty}\leq 1$$

can be met **only if** $|W_T(p)| \le 1$ for every RHP pole p of L(s).

(Proof is analogous to the one above)

Example: Limitation from RHP zero

Assume the sensitivity specification $W_S(s) = \frac{s+a}{2s}$, a > 0.

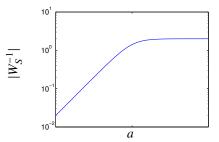


If the plant has a RHP zero in z, then $||W_SS||_{\infty} \leq 1$ is impossible to fulfill unless

$$\left| \frac{z+a}{2z} \right| \le 1 \quad \Leftrightarrow \quad a \le z$$

Example: Limitation from RHP zero

Assume the sensitivity specification $W_S(s) = \frac{s+a}{2s}$, a > 0.



If the plant has a RHP zero in z, then $||W_SS||_{\infty} \leq 1$ is impossible to fulfill unless

$$\left| \frac{z+a}{2z} \right| \le 1 \quad \Leftrightarrow \quad a \le z$$

("Closed loop must be slower than z for reasonable robustness, $M_s \leq 2$ ")

Example: Limitation from unstable pole

Assume the compl. sensitivity specification $W_T = \frac{s+b}{2b}$, b > 0



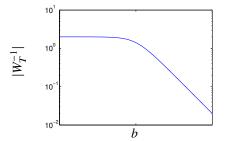
If the plant has an unstable pole in p, then $\|W_T T\|_{\infty} \le 1$ is impossible to fulfill unless

$$\left| \frac{p+b}{2b} \right| \le 1 \quad \Leftrightarrow \quad b \ge p$$

("Closed loop must be faster than p for reasonable robustness, $M_t \leq 2$ ")

Example: Limitation from unstable pole

Assume the compl. sensitivity specification $W_T = \frac{s+b}{2L}$, b>0



If the plant has an unstable pole in p, then $||W_TT||_{\infty} \le 1$ is impossible to fulfill unless

$$\left| \frac{p+b}{2b} \right| \le 1 \quad \Leftrightarrow \quad b \ge p$$

("Closed loop must be faster than p for reasonable robustness, $M_t \leq 2$ ")

RHP zero and unstable pole

For a system with both RHP zero \boldsymbol{z} and unstable pole \boldsymbol{p} it can be shown that

$$M_s = \sup_{\omega} |S(i\omega)| \ge \left| \frac{z+p}{z-p} \right|$$

(See lecture notes for details)

If $p \approx z$ the sensitivity function must have a high peak for every controller C.

Example: Bicycle with rear wheel steering

$$\frac{\theta(s)}{\delta(s)} = \frac{am\ell V_0}{bJ} \cdot \frac{(-s + V_0/a)}{(s^2 - mg\ell/J)}$$

Lecture 7 – summary

- Bode's Relation and Bode's Integral
- Limitations from unstable poles, RHP zeros and time delays
 - Rules of thumb for achievable ω_c
- Limitations on specifications on *S* and *T* from unstable zeros and poles: Hard proofs using Maximum Modulus principle
- Example: Back-wheel steering bicyle pole and zero i RHP