

Course Outline

- L1-L5 Specifications, models and loop-shaping by hand
 - Introduction
 - Stability and robustness
 - Specifications and disturbance models
 - Control synthesis in frequency domain
 - Case study: DVD player
- L6-L8 Limitations on achievable performance
- L9-L11 Controller optimization: analytic approach
- L12-L14 Controller optimization: numerical approach
 - L15 Course review

Loop shaping

Controller synthesis via loop shaping: Shape the **open loop gain** L = PC so that

- $[L] > |W_S|$ for low frequencies (disturbance rejection)
- ullet $|L|<|W_T^{-1}|$ for high frequencies (robustness, att. of meas. noise)
- good stability margins (φ_m , A_m , M_s) are achieved

The controller *C* is typically composed of several factors

- gair
- lag filters
- lead filters
- other filters (e.g., notch filter)

Loop shaping

Controller synthesis via loop shaping: Shape the **open loop gain** L = PC so that

- $[L] > |W_S|$ for low frequencies (disturbance rejection)
- ullet $|L|<|W_T^{-1}|$ for high frequencies (robustness, att. of meas. noise)
- good stability margins (φ_m , A_m , M_s) are achieved

The controller C is typically composed of several factors:

- gain
- lag filters
- lead filters
- other filters (e.g., notch filter)

Lecture 5 - Outline

- Case study: Control of a DVD player
- Review of cascade and midranging control

Case Study: Control of a DVD player

- The DVD player process
- Problem formulation
- Modeling
- Specifications
- Focus control loop shaping
- Radial control (track following)

Based on work by Bo Lincoln

Automatic Control LTH, 2018

Lecture 5 FRTN10 Multivariable Control

Scaled version of the control task in a DVD player:

- Imagine that you are traveling at half the speed of light, along a line from which you may only deviate 1 m
- The line is not straight but oscillates up to 4.5 km sideways up to 25 times per second

Scaled version of the control task in a DVD player:

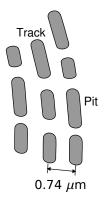
- Imagine that you are traveling at half the speed of light, along a line from which you may only deviate 1 m
- The line is not straight but oscillates up to 4.5 km sideways up to 25 times per second

Scaled version of the control task in a DVD player:

- Imagine that you are traveling at half the speed of light,
 along a line from which you may only deviate 1 m
- The line is not straight but oscillates up to 4.5 km sideways up to 25 times per second

Scaled version of the control task in a DVD player:

- Imagine that you are traveling at half the speed of light,
 along a line from which you may only deviate 1 m
- The line is not straight but oscillates up to 4.5 km sideways up to 25 times per second



Scaled version of the control task in a DVD player:

- Imagine that you are traveling at half the speed of light,
 along a line from which you may only deviate 1 m
- The line is not straight but oscillates up to 4.5 km sideways up to 25 times per second

Good luck!

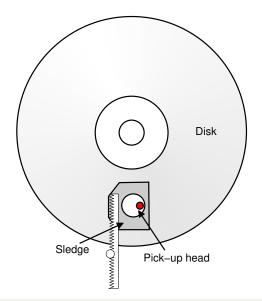
- 3.5 m/s speed along track
- 0.022 μ m tracking tolerance
- 100 μ m deviations at 10–25 Hz due to asymmetric discs

DVD Digital Versatile Disc, 4.7–8.5 GB

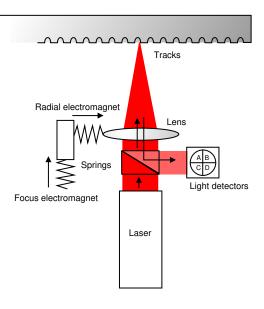
CD Compact Disc, 650-800 MB

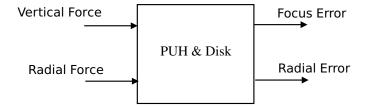
Blu-ray 25-400 GB

Can you see the laser spot?

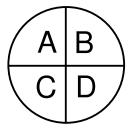

Automatic Control LTH, 2018

Lecture 5 FRTN10 Multivariable Control


The DVD Pick-Up Head

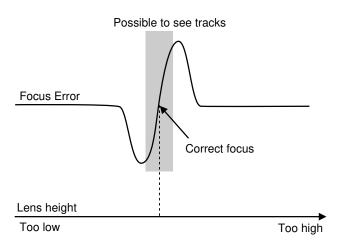

Automatic Control LTH, 2018

Lecture 5 FRTN10 Multivariable Control



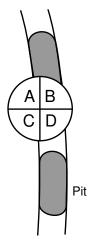
Input-output diagram for DVD control

The four photo detectors



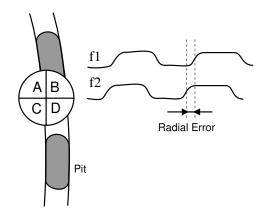
focus error =
$$(A+D) - (B+C)$$

Note: There are no other sensors in the pick-up head to help keep the laser in the track.



Focus error signal

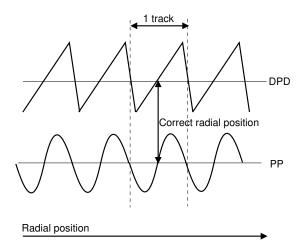
Radial error by push-pull



Look at

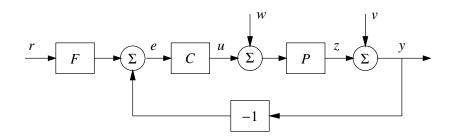
$$(A+C)-(B+D)$$

Radial error by phase difference



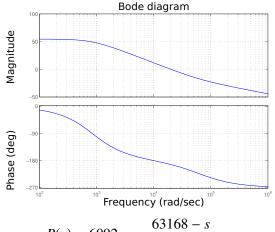
$$f_1 = A + D,$$
 $f_2 = B + C$

Error signal RE created by time difference


Radial error signals

Note: Larger linear error region if using phase difference.

Focus control design



- What blocks and signals are relevant for focus control?
- What disturbances are there?

Focus process model

Model obtained using system identification:

$$P(s) = 6092 \frac{63168 - s}{s^2 + 1553s + 718214}$$

From DVD standard ECMA-267

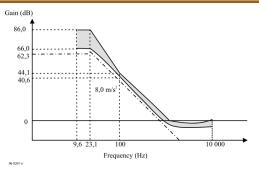


Figure 3 - Reference Servo for axial tracking

Bandwidth 100 Hz to 10 kHz

|1 + H| shall be within 20 % of $|1 + H_S|$.

The crossover frequency $f_0 = \omega_0/2\pi$ shall be specified by equation (II), where α_{max} shall be 1,5 times larger than the expected maximum axial acceleration of 8 m/s². The tracking error e_{max} shall not exceed 0,23 μ m. Thus the crossover frequency f_0 shall be

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{3 \alpha_{\text{max}}}{e_{\text{max}}}} = \frac{1}{2\pi} \sqrt{\frac{8 \times 1.5 \times 3}{0.23 \times 10^{-6}}} = 2.0 \text{ kHz}$$
 (II)

http://www.ecma-international.org/publications/standards/Ecma-267.htm

Specifications

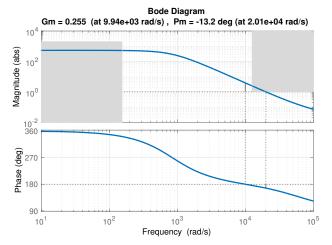
Cancel disturbances due to disc asymmetry

$$|P(i\omega)C(i\omega)| \ge 2000$$
 for $f \le 23$ Hz

Robustness towards model errors, rejection of meas. noise

$$|P(i\omega)C(i\omega)| \le 1$$

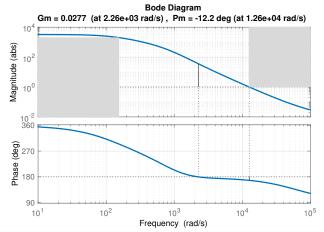
for
$$f > 2$$
 kHz


(Compare to the bit rate, which is in the order of 1 MHz)

Good stability margins

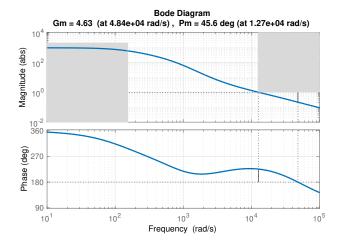
Open-Loop System

Bode plot of P(s) with stability margins and specifications:

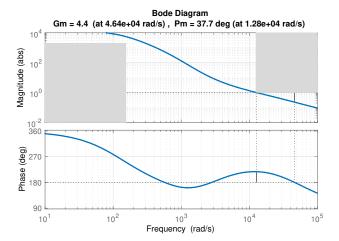


Can a P-controller solve the problem?

Add Lag Compensator

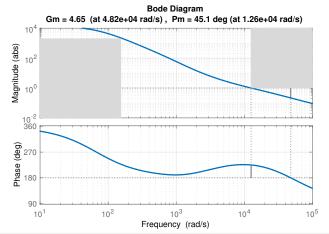

Use lag filter with M=15 to increase gain below 23 Hz. The break point needs to be well below 2 kHz in order to avoid excessive phase lag at the cross-over frequency: $C=KC_{lag}=\frac{0.4037(s+1885)}{s+125.7}$

Add Lead Compensator


Use lead filter with N=12 to increase phase by 57° at cross-over frequency. $C=KC_{lag}C_{lead}=\frac{1.398(s+1885)(s+3228)}{(s+125.7)(s+43530)}$

Add Another Lag Compensator

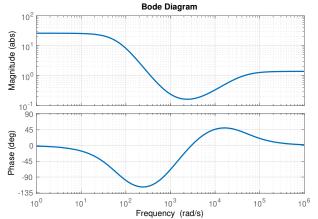
Low-frequency gain too low. Add another lag compensator with same parameters: $C=KC_{lag}^2C_{lead}=\frac{1.398(s+1885)^2(s+3628)}{(s+125.7)^2(s+43530)}$



Final Adjustments

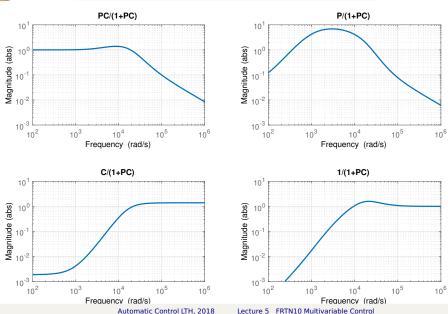
Phase margin too small again. Lower the break frequency of the lag filters to recover some phase:

$$C = KC_{lag}^2 C_{lead} = \frac{1.397(s+1005)^2(s+3628)}{(s+67.02)^2(s+43530)}$$

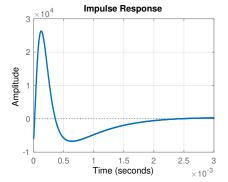


Final Controller

Bode diagram of final controller


$$C = KC_{lag}^2 C_{lead} = \frac{1.397(s+1005)^2(s+3628)}{(s+67.02)^2(s+43530)}$$

(Could add another pole to have high-frequency roll-off)

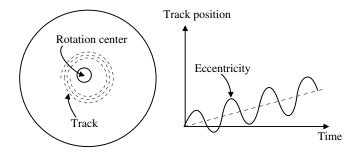


Gang of Four

Response to impulse load disturbance

Radial control

Make the laser follow the track by moving "sideways"/radially

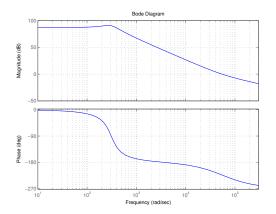

It is essential to solve the Focus control problem first

Tracking via two parallel actuators (midranging):

- Move lens (electromagnet/fast motion)
- Move sledge (slow/large range)

Disturbances:

- eccentricity (up to 100 tracks in one rotation)
- physical vibrations of DVD player
- o noise, dirt, etc.



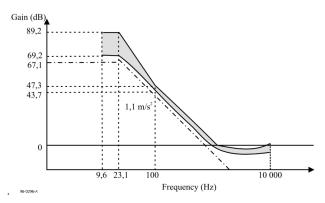
The disc is often a bit eccentric (i.e. not rotating around the track center). The resulting track position, which the Pick-Up-Head has to follow, is sinus-like.

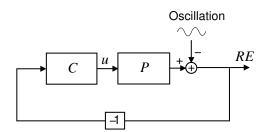
Experimental radial dynamics model

An estimated transfer function for the radial servo (from the control signal u to the radial error RE)

System identification made by sinusoidal excitation.

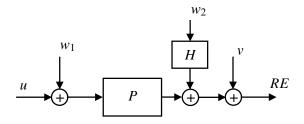
From DVD standard ECMA-267




Figure 4 - Reference Servo for Radial Tracking

Similar requirements as for the axial (focus) tracking

Many possible design methods (loop shaping, pole placement,
LQG)


Problem with sinusoidal output disturbance

The eccentricity causes problems (at about 10–25 Hz and magnitude up to 100 tracks). Cannot be exactly modeled due to uncertainty.

Stochastic disturbance modeling

Noise model: There is both white process noise w_1 , and a track offset, which is modeled as the white noise w_2 through a filter H.

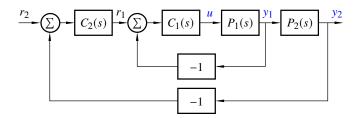
The filter H should have a high gain in the frequency range where the oscillation acts (bandpass filter)

Kalman filter + state feedback then solves the problem elegantly

Further reading

- Lecture notes on course web page
- "Sensing and Control in Optical Drives How to Read Data from a Clear Disc" by Amir H. Chaghajerdi, June 2008, IEEE Control Systems Magazine, pp. 23–29,

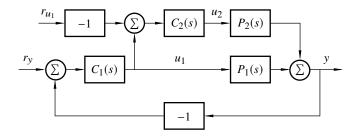
http://www.ieeecss.org/CSM/library/2008/june08/11-June08ApplicationsOfControl.pdf


Lecture 5 - Outline

- Case study: Control of a DVD player
- Review of cascade and midranging control

Cascade control

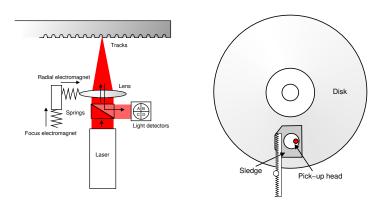
For systems with one control signal and two measurement signals:



- $C_1(s)$ controls the subsystem $P_1(s)$
 - Fast inner loop, $G_{y_1r_1}(s) \approx 1$
- $C_2(s)$ controls the subsystem $P_2(s)$
 - Slow outer loop

Midranging Control

For systems with one measurement signal and two control signals (e.g. one large-range/slow and one small-range/fast actuator)



- $C_1(s)$ controls the process output y with fast actuator u_1
- $C_2(s)$ controls u_1 to the middle of its operating range using slow actuator u_2 (note reverse gain)

Midranging Control – Example

Radial control of pick-up-head of DVD player

The pick-up-head has two electromagnets for fast positioning of the lens (left). Larger radial movements are taken care of by the sledge (right).