

Lecture 4 - Outline

- Frequency domain specifications
- 2 Loop shaping
- Feedforward design

Automatic Control LTH. 2018

Lecture 4 FRTN10 Multivariable Control

Design specifications

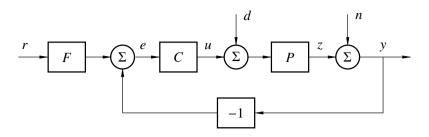
Find a controller that

- A: reduces the effect of load disturbances
- **B:** does not inject too much measurement noise into the system
- C: makes the closed loop insensitive to process variations
- D: makes the output follow the setpoint

Common to have a controller with **two degrees of freedom** (2 DOF), i.e. separate signal transmission from y to u and from r to u. This gives a nice separation of the design problem:

- Design feedback to deal with A, B, and C
- Design feedforward to deal with D

Relations between signals



$$Z = \frac{P}{1 + PC}D - \frac{PC}{1 + PC}N + \frac{PCF}{1 + PC}R$$

$$Y = \frac{P}{1 + PC}D + \frac{1}{1 + PC}N + \frac{PCF}{1 + PC}R$$

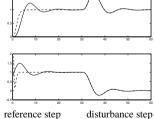
$$U = -\frac{PC}{1 + PC}D - \frac{C}{1 + PC}N + \frac{CF}{1 + PC}R$$

Automatic Control LTH, 2018

Lecture 4 FRTN10 Multivariable Control

Time-domain specifications

- Specifications for deterministic signals, e.g., step response w.r.t. reference change, load disturbance
 - Rise-time T_r
 - Overshoot M
 - Settling time T_s
 - ullet Static error e_0
 - ...



- reference
- Stochastic specifications, e.g.,
 - Process output variance
 - Control signal variance

Automatic Control LTH, 2018 Lecture 4 FRTN10 Multivariable Control

Automatic Control LTH, 2018 Lecture 4 FRTN10 Multivariable Control

Automatic Control LTH, 2018 Lecture 4 FRTN10 Multivariable Control

Frequency-domain specifications

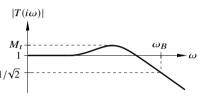
Open-loop specifications (for loop gain $G_0 = L = PC$)

- cross-over frequency ω_c
- lacktriangle phase margin $arphi_m$
- amplitude margin A_m
- ...

 $G_0(\omega_c)$ $G_0(\omega_c)$ $G_0(\omega_c)$ $G_0(\omega_c)$ $G_0(\omega_c)$ $G_0(\omega_c)$ $G_0(\omega_c)$ $G_0(\omega_c)$

Closed-loop specifications, e.g.

- ullet maximum sensitivity M_s
- lacktriangle resonance peak M_t
- ullet closed-loop bandwidth ω_B
- ...



Automatic Control LTH, 2018

Lecture 4 FRTN10 Multivariable Control

Frequency domain specifications

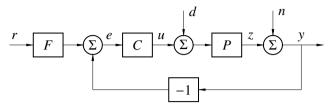
S+T=1 and other constraints makes the above impossible to achieve at all frequencies.

Typical design compromise:

- $T \rightarrow 0$ for high frequencies $(\omega > \omega_B)$
- $S \rightarrow 0$ for low frequencies (+ possibly other disturbance dominated frequencies)

Frequency domain specifications

Closed-loop specifications, cont'd:



Desired properties:

- Small influence of load disturbance d on z \Leftrightarrow $PS \approx 0$
- Limited amplification of noise n in control $u \Leftrightarrow CS \approx 0$
- Small influence of model errors on z \Leftrightarrow $S \approx 0$
- Robust stability despite model errors $\Leftrightarrow T \approx 0$
- Accurate tracking of setpoint $r \Leftrightarrow TF \approx 1$

Automatic Control LTH, 2018

Lecture 4 FRTN10 Multivariable Control

Expressing specifications on S and T

Maximum sensitivity specifications:

- $||S||_{\infty} \leq M_s$
- $|T|_{\infty} \leq M_t$

Frequency-weighted specifications:

- $\bullet \ \|W_S S\|_{\infty} \leq 1 \quad \Leftrightarrow \quad |S(i\omega)| \leq |W_S^{-1}(i\omega)|, \ \forall \omega$

where $W_S(s)$ and $W_T(s)$ are some weighting functions

Loop shaping

Idea: Look at the **loop gain** L = PC for design and translate specifications on S and T into specifications on L

$$S = \frac{1}{1+L} \approx \frac{1}{L}$$
 if L is large

$$T = \frac{L}{1+L} \approx L \qquad \text{if } L \text{ is small}$$

Classical loop shaping: Design ${\cal C}$ so that ${\cal L}={\cal PC}$ satisfies specifications on ${\cal S}$ and ${\cal T}$

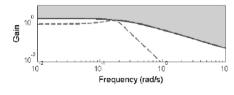
- how are the specifications related?
- what to do with the region around cross-over frequency ω_c (where $|L| \approx 1$)?

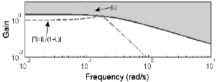
Lecture 4 FRTN10 Multivariable Control

Complementary sensitivity vs loop gain

$$T = \frac{L}{1 + L}$$

$$|T(i\omega)| \leq |W_T^{-1}(i\omega)| \quad \Leftrightarrow \quad \frac{|L(i\omega)|}{|1 + L(i\omega)|} \leq |W_T^{-1}(i\omega)|$$





For large frequencies, $W_T^{-1} \approx 0 \quad \Rightarrow \quad |T| \approx |L|$

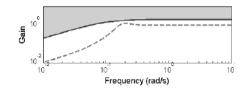
$$|L(i\omega)| \le |W_T^{-1}(i\omega)|$$
 (approx.)

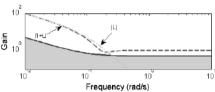
RVMQ2/22/2015

Sensitivity vs loop gain

$$S = \frac{1}{1+L}$$

$$|S(i\omega)| \le |W_S^{-1}(i\omega)| \quad \Leftrightarrow \quad |1+L(i\omega)| > |W_S(i\omega)|$$





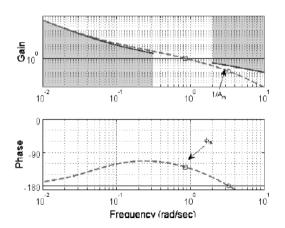
For small frequencies, W_S large $\Rightarrow 1 + L$ large and $|L| \approx |1 + L|$.

$$|L(i\omega)| \ge |W_S(i\omega)|$$
 (approx.)

Automatic Control LTH, 2018

Lecture 4 FRTN10 Multivariable Control

Resulting constraints on loop gain L:



Approximations are inexact around cross-over frequency ω_c . In this region, focus is on stability margins (A_m, φ_m)

Lead-lag compensation

Shape the loop gain L=PC using a compensator $C=C_1C_2C_3\dots$ composed of various elements, such as

gain

K

• lag (phase retarding) elements

$$C_{lag}(s) = \frac{s+a}{s+a/M}, \quad M > 1$$

lead (phase advancing) elements

$$C_{lead}(s) = N \frac{s+b}{s+bN}, \quad N > 1$$

Example:

$$C(s) = K \frac{s+a}{s+a/M} \cdot N \frac{s+b}{s+bN}$$

Automatic Control LTH, 2018

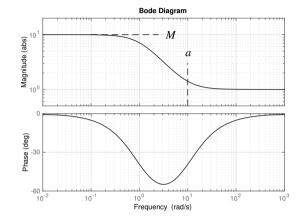
Lecture 4 FRTN10 Multivariable Control

Lag filter

- Increases low-frequency loop gain by factor *M*
 - $M = \infty \Rightarrow PI controller$
 - Reduces static error by factor M if L(s) contains an integrator
- Break frequency a should be as high as possible for fast disturbance rejection, but too high a reduces stability margins
 - Rule of thumb $a=0.1\omega_c$ guarantees that φ_m is reduced less than 6°

Lag filter

$$C_{lag}(s) = \frac{s+a}{s+a/M}, \quad M > 1$$

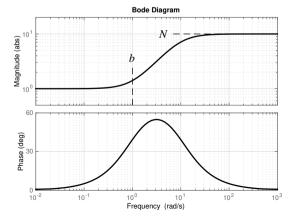


Automatic Control LTH, 2018

Lecture 4 FRTN10 Multivariable Control

Lead filter

$$G_{lead}(s) = N \frac{s+b}{s+bN}, \quad N > 1$$



Automatic Control LTH, 2018 Lecture 4 FRTN10 Multivariable Control

Automatic Control LTH, 2018

Lecture 4 FRTN10 Multivariable Control

Lead filter

Iterative lead-lag design

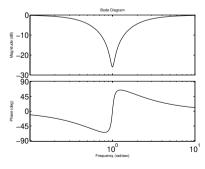
- Increases phase by amount that depends on N (see Collection of Formulae), maximum phase lead at $\omega=b\sqrt{N}$
 - ullet Typically placed at desired cross-over frequency ω_c
- Gain at $b\sqrt{N}$ increases by \sqrt{N} . To retain the same cross-over frequency, the overall controller gain must be decreased

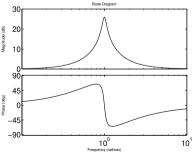
Automatic Control LTH, 2018

Lecture 4 FRTN10 Multivariable Control

Links with complex poles/zeros

Example (notch/resonance filters): $\frac{s^2 + 2\zeta_a\omega_0 s + \omega_0^2}{s^2 + 2\zeta_b\omega_0 s + \omega_0^2}$





$$\omega_0 = 1$$
, $\zeta_a = 0.05$, $\zeta_b = 1$

$$\omega_0 = 1$$
, $\zeta_a = 1$, $\zeta_b = 0.05$

Typical workflow:

- Adjust gain to obtain the desired cross-over frequency
- Add lag element to improve the low-frequency gain
- Add lead element to improve the phase margin

Adding a lead element while retaining the cross-over frequency affects the low-frequency gain

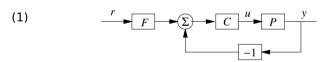
Need to iterate!

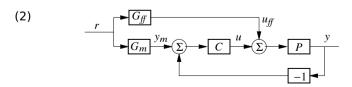
Automatic Control LTH, 2018

Lecture 4 FRTN10 Multivariable Control

Feedforward design

Two common 2-DOF configurations:





Ideally, we would like the output to follow the setpoint perfectly, i.e. y=r

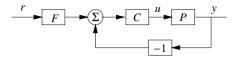
Automatic Control LTH, 2018

Lecture 4 FRTN10 Multivariable Control

Automatic Control LTH, 2018

Lecture 4 FRTN10 Multivariable Control

Feedforward design (1)



Perfect following requires

$$F = \frac{1 + PC}{PC} = T^{-1}$$

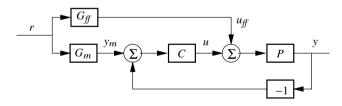
In general impossible because of pole excess in T. Also

- T might contain non-minimum-phase factors that can/should not be inverted
- *u* must typically satisfy some upper and lower limits

Automatic Control LTH, 2018

Lecture 4 FRTN10 Multivariable Control

Feedforward design (2)

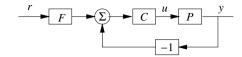


 G_m and G_{ff} can be viewed as generators of the desired output y_m and the feedforward u_{ff} that corresponds to y_m

For y to follow y_m , select

$$G_{ff} = G_m/P$$

Feedforward design (1)



Assume T minimum phase. An implementable choice of F is then

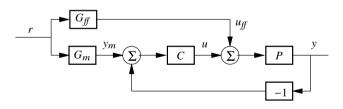
$$F(s) = \frac{1 + P(s)C(s)}{P(s)C(s)(sT_f + 1)^d}$$

where d is large enough to make F proper

Automatic Control LTH, 2018

Lecture 4 FRTN10 Multivariable Control

Feedforward design (2)



Since $G_{\rm ff} = G_m/P$ should be stable, causal and proper we find that

- Unstable zeros of P must be included in G_m
- ullet Time delays of P must be included in G_m
- ullet The pole excess of G_m must not be smaller than the pole excess of P

Take process limitations into account!

Lecture 4 FRTN10 Multivariable Control Automatic Control LTH, 2018

Automatic Control LTH, 2018 Lecture 4 FRTN10 Multivariable Control

Feedforward design - example

Process:

$$P(s) = \frac{1}{(s+1)^4}$$

Selected reference model:

$$G_m(s) = \frac{1}{(sT_m + 1)^4}$$

Then

$$G_{ff}(s) = \frac{G_m(s)}{P(s)} = \frac{(s+1)^4}{(sT_m+1)^4}$$
 $G_{\infty}(\infty) = \frac{1}{T_m^4}$

Fast response (small T_m) requires high gain in G_{ff} .

Bounds on the control signal limit how fast response we can obtain in practice

Automatic Control LTH, 2018 Lecture 4 FRTN10 Multivariable Control

Lecture 4 – summary

Frequency domain design:

- Good mapping between S, T and L = PC at low and high frequencies (mapping around cross-over frequency less clear)
- Simple relation between C and $L \Rightarrow$ "easy" to shape L
- Lead-lag design: iterative procedure

Feedforward design

 Must respect unstable zeros, time delays and pole excess of plant

Automatic Control LTH, 2018

Lecture 4 FRTN10 Multivariable Control