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A basic control system
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Controller: feedback C, feedforward F

Process: transfer function P

Process/load disturbance d: drives system from desired state

Controlled process variable z: should follow reference r

Measurement noise n: corrupts information about z
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A more general setting

Process disturbances need not enter at the process input, and

measurement noise and setpoint values may also enter in different

ways. More general setting:

Plant

Controller

✛ ✛

✛

✲

controller outputs u

controlled variables z

controller inputs y

exogenous signals w

We will return to this setting later in the course
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Design specifications

Find a controller that

A: reduces the effect of load disturbances

B: does not inject too much measurement noise into the system

C: makes the closed loop insensitive to process variations

D: makes the output follow the setpoint

Common to have a controller with two degrees of freedom

(2 DOF), i.e. separate signal transmission from y to u and from r

to u. This gives a nice separation of the design problem:

1 Design feedback to deal with A, B, and C

2 Design feedforward to deal with D
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Some systems only allow error feedback

Disk drive

Atomic Force Microscope

Only the control error can be measured

Design of disturbance attenuation and setpoint response cannot

be separated
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Relations between signals
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The “Gang of Four” / “Gang of Six”

Four transfer functions are needed to characterize the response to

load disturbances and measurement noise:

PC

1 + PC

P

1 + PC

C

1 + PC

1

1 + PC

Two more are required to describe the response to setpoint

changes (for 2-DOF controllers):

PCF

1 + PC

CF

1 + PC
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Some observations

To fully understand a control system it is necessary to look at

all four or six transfer functions

It may be strongly misleading to show properties of only one

or a few transfer functions, for example only the response of

the output to command signals. (This is a common error.)

The properties of the different transfer functions can be

illustrated by their frequency or time responses.
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Example: Frequency Responses

PI control (Kp = 0.775, Ti= 2.05) of P(s) = (s + 1)−4 with

G yr (s) = (0.5s + 1)−4. Gain curves:
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Example: Time Responses

PI control (Kp = 0.775, Ti= 2.05) of P(s) = (s + 1)−4 with

G yr (s) = (0.5s + 1)−4. Step responses:
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Time responses—an alternative

Responses to setpoint step, load disturbance step and random

measurement noise:
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Error feedback (dashed), 2-DOF controller (full)

One plot gives a good overview!
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A warning

Remember to always look at all responses when you are dealing

with control systems. The step response below looks fine, but. . .
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Response of y to step in r
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A warning – Gang of Four

Step responses:
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Unstable output response to load disturbance. What is going on?
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A warning – The system

Process: P(s) =
1

s − 1

Controller: C(s) =
s − 1

s
(cancels the unstable process pole!)

Response to reference change:

G yr (s) =
PC

1 + PC
=

1

s + 1

Reference to load disturbance:

G yd(s) =
P

1 + PC
=

s

s2 − 1
=

s

(s + 1)(s − 1)

The control system is not internally stable!
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Two main types of disturbances

u
P

dm du

z

n

y

+

C

Process (or load) disturbances d

Disturbances that affect the controlled process variables z

dm measurable, can use feedforward to cancel them

dn unmeasurable, must use feedback. Controller should have

high gain at the dominant frequencies to supress them

Measurement disturbances n

Disturbances that corrupt the feedback signals

Controller should have low gain at the dominant frequencies

to avoid being “fooled”
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Disturbance models

Deterministic disturbance models, e.g., impulse, step, ramp,

sinusoidal signals

Can be modeled by Dirac impulse filtered through linear

system

Stochastic disturbance models

Common model: Gaussian stochastic process

Can be modeled by white noise filtered through linear system

Reasonable model for many real-world random fluctuations
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Mini-problem

What linear systems G (s) can generate the following deterministic

disturbances?

A step

A ramp

A sinusoidal
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Stochastic process – definition

A stochastic process is a family of random variables {x(t), t ∈ T}

Can be viewed as a function of two variables, x = x(t,ω):

Fixed ω = ω0 gives a time function x(·,ω0) (realization)
Fixed t = t1 gives a random variable x(t1, ·) (distribution)

For a Gaussian process, x(t1, ·) has a normal distribution
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Gaussian processes

We will mainly work with zero-mean stationary Gaussian

processes.

Mean-value function:

m x = E x(t) ≡ 0

Covariance function:

rx(τ) = E x(t + τ)x(t)T

Cross-covariance function:

rxy(τ) = E x(t + τ)y(t)T

A zero-mean stationary Gaussian process is completely

characterized by its covariance function.
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Spectral density

The spectral density or spectrum of a stationary stochastic

process is defined as the Fourier transform of the covariance

function:

Φx(ω) :=

∫ ∞

−∞
rx(t)e−iωtdt

Describes the distribution of power over different frequencies

By inverse Fourier transform

rx(t) =
1

2π

∫ ∞

−∞
eiωt
Φx(ω) dω

In particular, the stationary (co)variance is given by

E x(t)xT (t) = rx(0) =
1

2π

∫ ∞

−∞
Φx(ω) dω
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Covariance fcn, spectral density, and realization
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White noise

White noise with intensity Rw is a random process w with

constant spectrum

Φw(ω) = Rw

Variance is infinite – not physically realizable

Can be interpreted as a train of random Dirac impulses

When filtered through a stable LTI system, the output is a

zero-mean stationary Gaussian process
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Filtering of white noise

w y

G (s)

w x

%x= Ax+Bw

Assume w white noise with intensity Rw. Two modeling/analysis

problems:

1 Given G (s) (or (A, B,C,D)), calculate the spectral density or

stationary variance of y (or x)

2 Conversely, given the spectral density of y, determine a

stable G (s) that generates that spectrum
Known as spectral factorization
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Calculation of spectrum – transfer function form

G (s)
w y

Given stable G (s) and input w with the spectral density Φw(ω).
Then output y gets the spectrum

Φy(ω) = G (iω)Φw(ω)G ∗(iω)

Special case: If w is white noise with intensity Rw, then

Φy(ω) = G (iω)RwG
∗(iω)
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Calculation of spectrum – state-space form

w x

%x= Ax+Bu

Assume a stable linear system with white noise input

%x = Ax + Bw, Φw(ω) = Rw

The transfer function from w to x is

G (s) = (sI − A)−1
B

and the spectrum for x will be

Φx(ω) = (iωI − A)−1
BRw B

∗(−iωI − A)−T
︸!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!︸

G∗(iω)
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Calculation of stationary covariance – state-space form

Theorem 3.1

Given a stable linear system with white noise input

%x = Ax + Bw, Φw(ω) = Rw

then the stationary covariance of x is given by

E xx
T
=

1

2π

∫ ∞

−∞
Φx(ω)dω := Πx

where Πx = Π
T
x > 0 is given by the solution to the Lyapunov

equation

AΠx + Πx AT
+ BRwBT

= 0
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Calculation of covariance – example

Consider the system

%x = Ax + Bw =

[

−1 2

−1 0

] [

x1

x2

]

+

[

1

0

]

w

where w is white noise with intensity 1.

What is the stationary covariance of x?

First check the eigenvalues of A : λ = − 1

2
± i

√
7

2
∈ LHP. OK!

Solve the Lyapunov equation AΠx + Πx AT
+ BRwBT

= 02,2.
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Example cont’d

AΠx + Πx AT
+ BRwBT

= 02×2

Find Πx:

[

−1 2

−1 0

] [

Π11 Π12

Π12 Π22

]

+

[

Π11 Π12

Π12 Π22

] [

−1 −1

2 0

]

+

[

1

0

]

[

1 0
]

=

=

[

2(−Π11 + 2Π12) + 1 −Π12 + 2Π22 − Π11

−Π12 + 2Π22 − Π11 −2Π12

]

=

[

0 0

0 0

]

Solving for Π11, Π12 and Π22 gives

Πx =

[

Π11 Π12

Π12 Π22

]

=

[

1/2 0

0 1/4

]

> 0

Matlab: lyap([-1 2; -1 0], [1; 0]*[1 0])
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Spectral factorization

Theorem 3.2

Assume that the scalar spectral density function Φw(ω) ≥ 0 is a

rational function of ω2 and finite for all ω. Then there exists a

rational function G (s) with all poles in the left half-plane and all

zeros in the left half-plane or on the imaginary axis such that

Φw(ω) = |G (iω)|2 = G (iω)G (−iω)
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Spectral factorization — example

Find a stable, minimum-phase filter G (s) such that a process y

generated by filtering unit intensity white noise through G gives

Φy(ω) =
ω2
+ 4

ω4
+ 10ω2

+ 9
,

Solution. We have

Φy(ω) =
ω2
+ 4

(ω2
+ 1)(ω2

+ 9)
=

*
*
*
*

iω + 2

(iω + 1)(iω + 3)

*
*
*
*

2

implying

G (s) =
s + 2

(s + 1)(s + 3)
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Lecture 3 – summary

Look at all important closed-loop transfer functions: Gang of

four / gang of six

White noise filtered through LTI system gives Gaussian

stochastic process – simple but useful disturbance model

Calculation of spectrum and stationary covariance given

generating system

Calculation of generating system given spectrum (spectral

factorization)
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