

A basic control system

Control system specifications

2 Disturbance models

- Stochastic processes
- Filtering of white noise
- Spectral factorization

- Controller: feedback C, feedforward F
- Process: transfer function P
- Process/load disturbance *d*: drives system from desired state
- Controlled process variable *z*: should follow reference *r*
- Measurement noise *n*: corrupts information about *z*

Automatic Control LTH, 2018 Lecture 3 FRTN10 Multivariable Control

A more general setting

Process disturbances need not enter at the process input, and measurement noise and setpoint values may also enter in different ways. More general setting:

We will return to this setting later in the course

Automatic Control LTH, 2018 Lecture 3 FRTN10 Multivariable Control

Design specifications

Find a controller that

- A: reduces the effect of load disturbances
- B: does not inject too much measurement noise into the system
- C: makes the closed loop insensitive to process variations
- **D:** makes the output follow the setpoint

Common to have a controller with **two degrees of freedom** (2 DOF), i.e. separate signal transmission from y to u and from r to u. This gives a nice separation of the design problem:

- Design feedback to deal with A, B, and C
- Design feedforward to deal with D

Some systems only allow error feedback

Relations between signals

Atomic Force Microscope

Lecture 3 FRTN10 Multivariable Control

Only the control error can be measured

Automatic Control LTH, 2018

Design of disturbance attenuation and setpoint response cannot be separated

The "Gang of Four" / "Gang of Six"

Automatic Control LTH, 2018 Lecture 3 FRTN10 Multivariable Control

Some observations

 $Z = \frac{P}{1 + PC}D - \frac{PC}{1 + PC}N + \frac{PCF}{1 + PC}R$

 $Y = \frac{P}{1 + PC}D + \frac{1}{1 + PC}N + \frac{PCF}{1 + PC}R$

 $U = -\frac{PC}{1+PC}D - \frac{C}{1+PC}N + \frac{CF}{1+PC}R$

Four transfer functions are needed to characterize the response to load disturbances and measurement noise:

$$\frac{PC}{1+PC} \qquad \frac{P}{1+PC} \\ \frac{C}{1+PC} \qquad \frac{1}{1+PC}$$

Two more are required to describe the response to setpoint changes (for 2-DOF controllers):

$$\frac{PCF}{1+PC} \qquad \frac{CF}{1+PC}$$

- To fully understand a control system it is necessary to look at **all** four or six transfer functions
- It may be strongly misleading to show properties of only one or a few transfer functions, for example only the response of the output to command signals. (This is a common error.)
- The properties of the different transfer functions can be illustrated by their frequency or time responses.

Example: Frequency Responses

Example: Time Responses

PI control ($K_p = 0.775$, $T_i = 2.05$) of $P(s) = (s + 1)^{-4}$ with $G_{yr}(s) = (0.5s + 1)^{-4}$. Gain curves:

Automatic Control LIH, 2018 Lecture 3 FRINIO Multivari

Time responses—an alternative

Responses to setpoint step, load disturbance step and random measurement noise:

Error feedback (dashed), 2-DOF controller (full)

One plot gives a good overview!

Pl control ($K_p = 0.775$, $T_i = 2.05$) of $P(s) = (s + 1)^{-4}$ with $G_{vr}(s) = (0.5s + 1)^{-4}$. Step responses:

Remember to always look at **all** responses when you are dealing with control systems. The step response below looks fine, but...

A warning - Gang of Four

A warning - The system

Step responses:

Unstable output response to load disturbance. What is going on?

Lecture 3 FRTN10 Multivariable Control Automatic Control LTH, 2018

Lecture 3 – Outline

- Disturbance models
 - Stochastic processes
 - Filtering of white noise
 - Spectral factorization

Response to reference change:

$$G_{yr}(s) = \frac{PC}{1+PC} = \frac{1}{s+1}$$

Reference to load disturbance:

$$G_{yd}(s) = \frac{P}{1 + PC} = \frac{s}{s^2 - 1} = \frac{s}{(s+1)(s-1)}$$

The control system is not internally stable!

Lecture 3 FRTN10 Multivariable Control Automatic Control LTH, 2018

Two main types of disturbances

Process (or load) disturbances d

- Disturbances that affect the controlled process variables z
 - d_m measurable, can use feedforward to cancel them
 - d_n unmeasurable, must use feedback. Controller should have high gain at the dominant frequencies to supress them

Measurement disturbances n

- Disturbances that corrupt the feedback signals
 - Controller should have low gain at the dominant frequencies to avoid being "fooled"

Mini-problem

Deterministic disturbance models , e.g., impulse, step, ramp, sinusoidal signals	What linear systems $G(s)$ can generate the following deterministic disturbances?
 Can be modeled by Dirac impulse filtered through linear system 	 A step
 Stochastic disturbance models Common model: Gaussian stochastic process Can be modeled by white noise filtered through linear system Reasonable model for many real-world random fluctuations 	 A ramp
	A sinusoidal

Stochastic process – definition

Lecture 3 FRTN10 Multivariable Control

A **stochastic process** is a family of random variables $\{x(t), t \in T\}$

Can be viewed as a function of two variables, $x = x(t, \omega)$:

Automatic Control LTH, 2018

- Fixed $\omega = \omega_0$ gives a time function $x(\cdot, \omega_0)$ (realization)
- Fixed $t = t_1$ gives a random variable $x(t_1, \cdot)$ (distribution)

For a **Gaussian process**, $x(t_1, \cdot)$ has a normal distribution

Gaussian processes

Lecture 3 FRTN10 Multivariable Control

We will mainly work with zero-mean stationary Gaussian processes.

Automatic Control LTH, 2018

Mean-value function:

$$m_x = \mathbf{E} \, x(t) \equiv 0$$

Covariance function:

$$r_x(\tau) = \mathbf{E} x(t+\tau) x(t)^T$$

Cross-covariance function:

$$r_{xy}(\tau) = \mathbf{E} \, x(t+\tau) y(t)^T$$

A zero-mean stationary Gaussian process is completely characterized by its covariance function.

function:

By inverse Fourier transform

The **spectral density** or **spectrum** of a stationary stochastic

 $\Phi_x(\omega) := \int^\infty r_x(t) e^{-i\omega t} dt$

 $r_x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega t} \Phi_x(\omega) \, d\omega$

 $\operatorname{E} x(t)x^{T}(t) = r_{x}(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Phi_{x}(\omega) \, d\omega$

White noise

In particular, the **stationary (co)variance** is given by

Describes the distribution of power over different frequencies

process is defined as the Fourier transform of the covariance

Covariance fcn, spectral density, and realization

Automatic Control LTH, 2018 Lecture 3 FRTN10 Multivariable Control

White noise with intensity R_w is a random process w with constant spectrum

$$\Phi_w(\omega) = R_w$$

- Variance is infinite not physically realizable
- Can be interpreted as a train of random Dirac impulses
- When filtered through a stable LTI system, the output is a zero-mean stationary Gaussian process

Filtering of white noise

Assume w white noise with intensity R_w . Two modeling/analysis problems:

- Given G(s) (or (A, B, C, D)), calculate the spectral density or stationary variance of y (or x)
- Onversely, given the spectral density of y, determine a stable G(s) that generates that spectrum
 - Known as spectral factorization

Calculation of spectrum – transfer function form

Calculation of spectrum – state-space form

Given stable G(s) and input w with the spectral density $\Phi_w(\omega)$. Then output y gets the spectrum

$$\Phi_{v}(\omega) = G(i\omega)\Phi_{w}(\omega)G^{*}(i\omega)$$

Special case: If
$$w$$
 is white noise with intensity R_w , then

$$\Phi_{\rm v}(\omega) = G(i\omega)R_{\rm w}G^*(i\omega)$$

Assume a stable linear system with white noise input

Automatic Control LTH, 2018

 $\dot{x} = Ax + Bw, \qquad \Phi_w(\omega) = R_w$

The transfer function from w to x is

$$G(s) = (sI - A)^{-1}B$$

and the spectrum for x will be

$$\Phi_x(\omega) = (i\omega I - A)^{-1} B R_w \underbrace{B^* (-i\omega I - A)^{-T}}_{G^*(i\omega)}$$

Automatic Control LTH, 2018 Lecture 3 FRTN10 Multivariable Control

Calculation of covariance – example

Lecture 3 FRTN10 Multivariable Control

Theorem 3.1

Given a stable linear system with white noise input

$$\dot{x} = Ax + Bw, \qquad \Phi_w(\omega) = R_w$$

then the stationary covariance of x is given by

$$\mathbf{E} x x^T = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Phi_x(\omega) d\omega := \Pi_x$$

where $\Pi_x = \Pi_x^T > 0$ is given by the solution to the Lyapunov equation

$$A\Pi_x + \Pi_x A^T + BR_w B^T = 0$$

Consider the system

$$\dot{x} = Ax + Bw = \begin{bmatrix} -1 & 2 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} w$$

where w is white noise with intensity 1.

What is the stationary covariance of *x*?

First check the eigenvalues of $A: \lambda = -\frac{1}{2} \pm i\frac{\sqrt{7}}{2} \in LHP$. OK!

Solve the Lyapunov equation $A\Pi_x + \Pi_x A^T + BR_w B^T = 0_{2,2}$.

Theorem 3.2

Spectral factorization

Assume that the scalar spectral density function $\Phi_w(\omega) \ge 0$ is a rational function of ω^2 and finite for all ω . Then there exists a rational function G(s) with all poles in the left half-plane and all zeros in the left half-plane or on the imaginary axis such that

 $\Phi_{w}(\omega) = |G(i\omega)|^{2} = G(i\omega)G(-i\omega)$

 $A\Pi_x + \Pi_x A^T + BR_w B^T = 0_{2\times 2}$

Find Π_x :

$$\begin{bmatrix} -1 & 2 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} \Pi_{11} & \Pi_{12} \\ \Pi_{12} & \Pi_{22} \end{bmatrix} + \begin{bmatrix} \Pi_{11} & \Pi_{12} \\ \Pi_{12} & \Pi_{22} \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 2 & 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} =$$
$$= \begin{bmatrix} 2(-\Pi_{11} + 2\Pi_{12}) + 1 & -\Pi_{12} + 2\Pi_{22} - \Pi_{11} \\ -\Pi_{12} + 2\Pi_{22} - \Pi_{11} & -2\Pi_{12} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Solving for $\Pi_{11},\,\Pi_{12}$ and Π_{22} gives

$$\Pi_x = \begin{bmatrix} \Pi_{11} & \Pi_{12} \\ \Pi_{12} & \Pi_{22} \end{bmatrix} = \begin{bmatrix} 1/2 & 0 \\ 0 & 1/4 \end{bmatrix} > 0$$

Matlab: lyap([-1 2; -1 0], [1; 0]*[1 0])

Automatic Control LTH, 2018 Lecture 3 FRTN10 Multivariable Control

Spectral factorization — example

Automatic Control LTH, 2018 Lecture 3 FRTN10 Multivariable Control

Lecture 3 – summary

Find a stable, minimum-phase filter G(s) such that a process y generated by filtering unit intensity white noise through G gives

$$\Phi_{y}(\omega) = \frac{\omega^2 + 4}{\omega^4 + 10\omega^2 + 9},$$

Solution. We have

$$\Phi_{y}(\omega) = \frac{\omega^{2} + 4}{(\omega^{2} + 1)(\omega^{2} + 9)} = \left|\frac{i\omega + 2}{(i\omega + 1)(i\omega + 3)}\right|^{2}$$

implying

$$G(s) = \frac{s+2}{(s+1)(s+3)}$$

- Look at all important closed-loop transfer functions: Gang of four / gang of six
- White noise filtered through LTI system gives Gaussian stochastic process – simple but useful disturbance model
- Calculation of spectrum and stationary covariance given generating system
- Calculation of generating system given spectrum (spectral factorization)