

Lecture 2

FRTN10 Multivariable Control

* SIGI RVMOL

Automatic Control LTH, 2018

Course Outline

L1–L5 Specifications, models and loop-shaping by hand

- Introduction
- Stability and robustness
- Specifications and disturbance models
- Control synthesis in frequency domain
- Case study: DVD player

L6–L8 Limitations on achievable performance

- L9–L11 Controller optimization: analytic approach
- L12–L14 Controller optimization: numerical approach
 - L15 Course review

Stability

- 2 Sensitivity and robustness
- The Small Gain Theorem
 - Singular values

Lecture 2 – Outline

Stability

- 2 Sensitivity and robustness
- 3 The Small Gain Theorem
- Singular values

Examples:

- bicycle
- JAS 39 Gripen
- Mercedes A-class
- ABS brakes

$$\begin{array}{c} u \\ \hline \\ S \\ \hline \\ \end{array} \begin{array}{c} y = S(u) \\ \hline \\ \end{array}$$

A general system S is called **input-output stable** (or " L_2 stable" or "BIBO stable" or just "stable") if its L_2 gain is finite:

$$\|\mathcal{S}\| = \sup_{u} \frac{\|\mathcal{S}(u)\|}{\|u\|} < \infty$$

For an LTI system S with impulse response g(t) and transfer function G(s), the following stability conditions are equivalent:

- $\|\mathcal{S}\|$ is bounded
- g(t) decays exponentially
- All poles of *G*(*s*) are in the left half-plane (LHP), i.e., all poles have negative real part

Internal stability

The LTI system

$$\frac{dx}{dt} = Ax + Bu$$
$$y = Cx + Du$$

is called **internally stable** if the following equivalent conditions hold:

- The state x decays exponentially when u = 0
- All eigenvalues of A are in the LHP

Internal vs input-output stability

lf

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

is internally stable then

$$G(s) = C(sI - A)^{-1}B + D$$

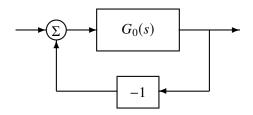
is input-output stable.

Warning

The opposite is not always true! There may be unstable pole-zero cancellations (that also render the system uncontrollable and/or unobservable), and these may not be seen in the transfer function!

Stability of feedback loops

Assume scalar open-loop system $G_0(s)$

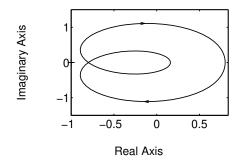


The closed-loop system is stable **if and only if** all solutions to the characteristic equation

$$1 + G_0(s) = 0$$

are in the left half-plane.

If $G_0(s)$ is stable, then the closed-loop system $[1 + G_0(s)]^{-1}$ is stable if and only if the Nyquist curve of $G_0(s)$ does not encircle -1.



(Note: Matlab gives a Nyquist plot for both positive and negative frequencies)

Let

- P = number of **unstable** (RHP) poles in $G_0(s)$
- N = number of **clockwise** encirclements of -1 by the Nyquist plot of $G_0(s)$

Then the closed-loop system $[1 + G_0(s)]^{-1}$ has P + N unstable poles

Lecture 2 – Outline

Stability

- Sensitivity and robustness
 - 3 The Small Gain Theorem
 - 4 Singular values

- How sensitive is the closed-loop system to model errors and disturbances?
- How do we measure the "distance to instability"?
- Is it possible to guarantee stability for all systems within some distance from the ideal model?

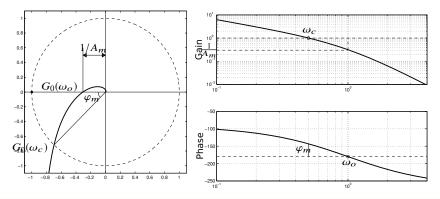
Amplitude and phase margins

Amplitude margin A_m :

$$\arg G_0(i\omega_0) = -180^\circ, \qquad |G_0(i\omega_0)| = 1/A_m$$

Phase margin φ_m :

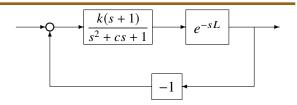
 $|G_0(i\omega_c)| = 1,$ $\arg G_0(i\omega_c) = \varphi_m - 180^\circ$



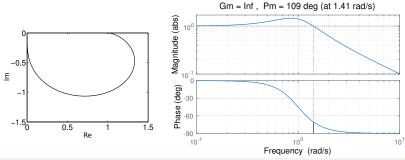
Automatic Control LTH, 2018

Lecture 2 FRTN10 Multivariable Control

Mini-problem



Nominally k = 1, c = 1 and L = 0. How much margin is there in each parameter before the closed-loop system becomes unstable?

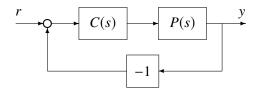


Automatic Control LTH, 2018

Lecture 2 FRTN10 Multivariable Control

Mini-problem

Sensitivity functions

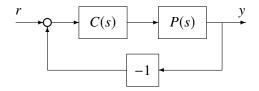


$$S(s) = \frac{1}{1 + P(s)C(s)}$$
 sensitivity function
$$T(s) = \frac{P(s)C(s)}{1 + P(s)C(s)}$$
 complementary sensitivity function

Note that we always have

$$S(s) + T(s) = 1$$

Sensitivity towards changes in plant



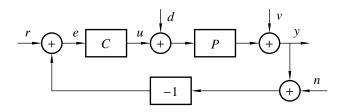
How sensitive is the closed loop to a (small) change in *P*?

$$\frac{dT}{dP} = \frac{C}{(1+PC)^2} = \frac{T}{P(1+PC)}$$

Relative change in T compared to relative change in P:

$$\frac{dT/T}{dP/P} = \frac{1}{1+PC} = S$$

Sensitivity towards disturbances



Open-loop response (C = 0) to process disturbances d, v:

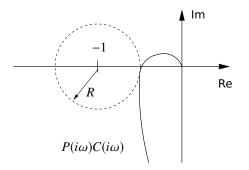
$$Y_{ol} = V + PD$$

Closed-loop response:

$$Y_{cl} = \frac{1}{1 + PC}V + \frac{P}{1 + PC}D = SY_{ol}$$

The L_2 gain of the sensitivity function measures the inverse of the distance between the Nyquist plot and the point -1:

$$R^{-1} = \sup_{\omega} \left| \frac{1}{1 + P(i\omega)C(i\omega)} \right| = M_s$$



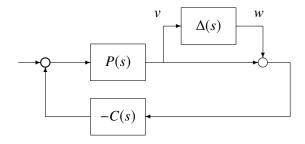
Stability

- 2 Sensitivity and robustness
- The Small Gain Theorem
 - Singular values

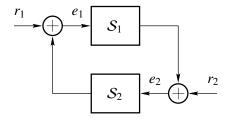
Robustness analysis

How large plant uncertainty Δ can be tolerated without risking instability?

Example (multiplicative uncertainty):



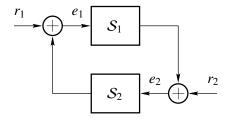
The Small Gain Theorem



Assume that S_1 and S_2 are stable. If $||S_1|| \cdot ||S_2|| < 1$, then the closed-loop system (from (r_1, r_2) to (e_1, e_2)) is stable.

- Note 1: The theorem applies also to nonlinear, time-varying, and multivariable systems
- Note 2: The stability condition is sufficient but not necessary, so the results may be conservative

The Small Gain Theorem



Assume that S_1 and S_2 are stable. If $||S_1|| \cdot ||S_2|| < 1$, then the closed-loop system (from (r_1, r_2) to (e_1, e_2)) is stable.

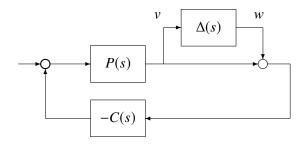
- Note 1: The theorem applies also to nonlinear, time-varying, and multivariable systems
- Note 2: The stability condition is sufficient but not necessary, so the results may be conservative

$$e_{1} = r_{1} + S_{2}(r_{2} + S_{1}(e_{1}))$$
$$\|e_{1}\| \leq \|r_{1}\| + \|S_{2}\| \left(\|r_{2}\| + \|S_{1}\| \cdot \|e_{1}\| \right)$$
$$\|e_{1}\| \leq \frac{\|r_{1}\| + \|S_{2}\| \cdot \|r_{2}\|}{1 - \|S_{1}\| \cdot \|S_{2}\|}$$

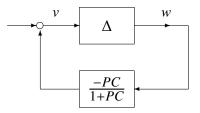
This shows bounded gain from (r_1, r_2) to e_1 .

The gain to e_2 is bounded in the same way.

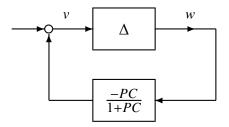
Application to robustness analysis



The diagram can be redrawn as



Application to robustness analysis



Assuming that $T = \frac{PC}{1+PC}$ is stable, The Small Gain Theorem guarantees stability if

 $\|\Delta\|\cdot\|T\|<1$

Stability

- 2 Sensitivity and robustness
- 3 The Small Gain Theorem
- 4 Singular values

Recall from Lecture 1 that

$$\|\mathcal{S}\| = \sup_{\omega} |G(i\omega)| = \|G\|_{\infty}$$

for a stable LTI system ${\cal S}.$

How to calculate $|G(i\omega)|$ for a multivariable system?

For a vector $x \in \mathbb{C}^n$, we use the 2-norm

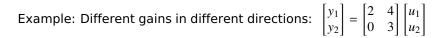
$$|x| = \sqrt{x^*x} = \sqrt{|x_1|^2 + \dots + |x_n|^2}$$

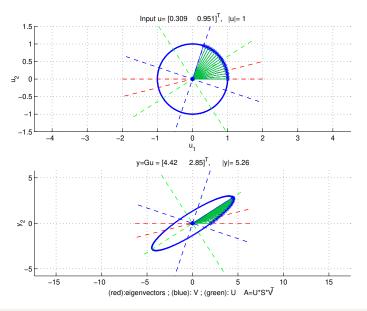
(A^* denotes the conjugate transpose of A)

For a matrix $A \in \mathbb{C}^{n imes m}$, we use the L_2 -induced norm

$$||A|| := \sup_{x} \frac{|Ax|}{|x|} = \sup_{x} \sqrt{\frac{x^*A^*Ax}{x^*x}} = \sqrt{\overline{\lambda}(A^*A)}$$

 $\overline{\lambda}(A^*A)$ denotes the largest eigenvalue of A^*A . The ratio |Ax|/|x| is maximized when x is a corresponding eigenvector.





Automatic Control LTH, 2018 Lecture 2 FRTN10 Multivariable Control

Singular Values

For a matrix A, its singular values σ_i are defined as

 $\sigma_i = \sqrt{\lambda_i}$

where λ_i are the eigenvalues of A^*A .

Let $\overline{\sigma}(A)$ denote the largest singular value and $\underline{\sigma}(A)$ the smallest singular value.

For a linear map y = Ax, it holds that

$$\underline{\sigma}(A) \le \frac{|y|}{|x|} \le \overline{\sigma}(A)$$

The singular values are typically computed using singular value decomposition (SVD):

$$A = U\Sigma V^*$$

Singular Values

For a matrix A, its singular values σ_i are defined as

 $\sigma_i = \sqrt{\lambda_i}$

where λ_i are the eigenvalues of A^*A .

Let $\overline{\sigma}(A)$ denote the largest singular value and $\underline{\sigma}(A)$ the smallest singular value.

For a linear map y = Ax, it holds that

$$\underline{\sigma}(A) \le \frac{|\mathbf{y}|}{|\mathbf{x}|} \le \overline{\sigma}(A)$$

The singular values are typically computed using singular value decomposition (SVD):

$$A = U\Sigma V^*$$

SVD example

Matlab code for singular value decomposition of the matrix

$$A = \begin{bmatrix} 2 & 4 \\ 0 & 3 \end{bmatrix}$$

SVD:

$$A = U \cdot S \cdot V^*$$

where both the matrices U and V are unitary (i.e. have orthonormal columns s.t. $V^*V = I$) and S is the diagonal matrix with (sorted decreasing) singular values σ_i . Multiplying A with an input vector along the first column in V gives

$$A \cdot V_{(:,1)} = USV^* \cdot V_{(:,1)} =$$
$$= US \begin{bmatrix} 1\\ 0 \end{bmatrix} = U_{(:,1)} \cdot \sigma_1$$

That is, we get maximal gain σ_1 in the output direction $U_{(:,1)}$ if we use an input in direction $V_{(:,1)}$ (and minimal gain σ_2 if we use the second column $V_{(:,n)} = V_{(:,2)}$).

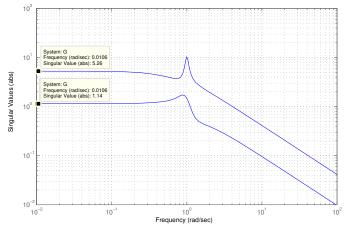
Example: Gain of multivariable system

Consider the transfer function matrix

$$G(s) = \begin{bmatrix} \frac{2}{s+1} & \frac{4}{2s+1} \\ \frac{s}{s^2 + 0.1s + 1} & \frac{3}{s+1} \end{bmatrix}$$

- >> G=[2/(s+1) 4/(2*s+1); s/(s^2+0.1*s+1) 3/(s+1)];
- >> sigma(G) % plot sigma values of G wrt freq
- >> grid on
- >> norm(G,inf) % infinity norm = system gain
 ans =

10.3577



The singular values of the tranfer function matrix (prev slide). Note that G(0)= [2 4 ; 0 3] which corresponds to A in the SVD-example above. $||G||_{\infty} = 10.3577.$

- Input–output stability: $\|\mathcal{S}\| < \infty$
- Sensitivity function: $S := \frac{dT/T}{dP/P} = \frac{1}{1+PC}$
- Small Gain Theorem: The feedback interconnection of \mathcal{S}_1 and \mathcal{S}_2 is stable if $\|\mathcal{S}_1\|\cdot\|\mathcal{S}_2\|<1$
 - Conservative compared to the Nyquist criterion
 - Useful for robustness analysis
- The gain of a multivariable system G(s) is given by $\sup_{\omega} \overline{\sigma}(G(i\omega))$, where $\overline{\sigma}$ is the largest singular value