

L1-L5 Specifications, models and loop-shaping by hand

L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach

9. Linear-quadratic control

10. Kalman filtering, LQG

11. More on LQG

L12-L14 Controller optimization: Numerical approach

FRTN10 Multivariable Control, Lecture 11

Automatic Control LTH, 2017

Lecture 11 - Outline

- 1. Tuning the LQG controller
- 2. Robustness of LQG
- 3. Integral action, reference values

[Glad&Liung sections 9.1-9.4 and 5.7]

Summary of LQG

Given white noise ($rac{v_1}{v_2}$) with intensity ($rac{R_1}{R_{12}^T} rac{R_{12}}{R_2}$) and the linear plant

$$\dot{x}(t) = Ax(t) + Bu(t) + Nv_1(k)$$
$$y(t) = Cx(t) + v_2(t)$$

consider controllers of the form

$$\dot{x}(t) = A\hat{x}(t) + Bu(t) + K(y(t) - C\hat{x}(t))$$

$$u(t) = -L\hat{x}(t)$$

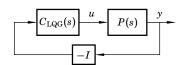
The stationary variance

$$\mathbb{E}\left(x^TQ_1x + 2x^TQ_{12}u + u^TQ_2u\right)$$

is minimized when

$$\begin{split} L &= Q_2^{-1}(SB + Q_{12})^T & K &= (PC^T + NR_{12})R_2^{-1} \\ 0 &= Q_1 + A^TS + SA - (SB + Q_{12})Q_2^{-1}(SB + Q_{12})^T \\ 0 &= NR_1N^T + AP + PA^T - (PC^T + NR_{12})R_2^{-1}(PC^T + NR_{12})^T \end{split}$$

The LQG controller



The controller transfer function (from -y to u) is given by

$$C_{\rm LQG}(s) = L(sI - A + BL + KC)^{-1}K$$

► Same order as the plant model

Several options in Matlab:

- ► L = lqr(..), K = lqe(..), C_LQG = reg(P,L,K)
- ► L = lqr(..), obs = kalman(..), C_LQG = lqgreg(obs,L)
- ightharpoonup C_LQG = lqg(P,Q,R)

Lecture 11 - Outline

- 1. Tuning the LQG controller
- 2. Robustness of LQG
- 3. Integral action, reference values

How to choose the cost function

- In rare instances, a quadratic cost function follows directly from the design specifications
- ► In most cases, the cost function must be iteratively tuned by the designer to achieve the desired closed-loop behavior

Some possible starting points:

- $\,\blacktriangleright\,$ Only penalize the outputs y=Cx and the inputs u; put $Q_1=C^TC$, $Q_2=\rho I$, and $Q_{12}=0$
- Make the diagonal elements equal to the inverse value of the square of the allowed deviation:

$$Q_1 = egin{pmatrix} rac{1}{(x_1^{ ext{max}})^2} & \dots & 0 \ dots & \ddots & dots \ 0 & rac{1}{(x_n^{ ext{max}})^2} \end{pmatrix}, \; Q_2 = egin{pmatrix} rac{1}{(u_1^{ ext{max}})^2} & \dots & 0 \ dots & \ddots & dots \ 0 & rac{1}{(u_m^{ ext{max}})^2} \end{pmatrix}, \; Q_{12} = 0$$

Tuning the cost function

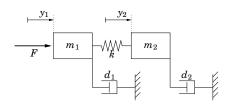
- \blacktriangleright To achieve higher bandwidth (more aggressive control), decrease Q_2 (or, equivalently, increase $Q_1)$
- ► To increase the damping of a state x_i , add penalty on \dot{x}_i^2
- ${\bf r}$ To make a state x_j behave more like $\dot x_j=-\alpha x_j,$ add penalty on $(\dot x_j+\alpha x_j)^2$

Note that

$$\dot{x}_{j}^{2} = (A_{j}x + B_{j}u)^{T}(A_{j}x + B_{j}u)$$

= $x^{T}(A_{j}^{T}A_{j})x + 2x^{T}(A_{j}^{T}B_{j})u + u^{T}(B_{j}^{T}B_{j})u$

Example — Flexible servo

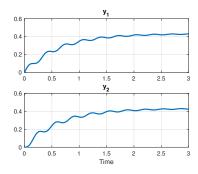


$$m_1 \frac{d^2 y_1}{dt^2} = -d_1 \frac{dy_1}{dt} - k(y_1 - y_2) + F(t)$$

$$m_2 \frac{d^2 y_2}{dt^2} = -d_2 \frac{dy_2}{dt} + k(y_1 - y_2)$$

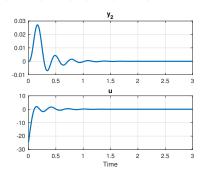
Open-loop response

Response to impulse input disturbance:



First iteration

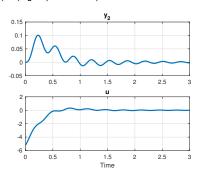
Minimize $\mathbf{E}(y_2^2 + u^2) = \mathbf{E}(x^T(C_2^TC_2)x + u^2)$



Too fast, control signal too aggressive

Second iteration

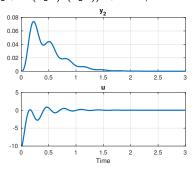
Minimize E $(x^T(C_2^TC_2)x + 100u^2)$



Good speed, needs improved damping

Third iteration

Minimize E $(y_2^2 + 0.1\dot{y}_2^2 + 100u^2) =$ E $(x^T(C_2^TC_2 + 0.1(C_2A)^T(C_2A))x + 100u^2)$



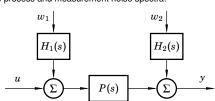
Better damping, but more aggressive control signal

Tuning the Kalman filter

- ► The real noise properties are seldomly known
- lacksquare As a starting point put N=B, $R_1=I$, and $R_2=
 ho I$
- lacktriangleright If the controller is too sensitive to measurement noise, increase R_2
- If the robustness of the closed loop degrades too much when using the Kalman filter for output feedback, decrease ${\cal R}_2$

Noise shaping

The Kalman filter can be tuned by extending the model with filters that shape the process and measurement noise spectra:



- ightharpoonup Dominating load disturbance frequencies are modeled via H_1 increases gain of Kalman filter (and of resulting LQG controller)
- ightharpoonup Dominating measurement disturbance frequencies are modeled via H_2 decreases gain of Kalman filter (and of resulting LQG controller)

Lecture 11 – Outline

- 1. Tuning the LQG controller
- 2. Robustness of LQG
- 3. Integral action, reference values

Robustness of LQG controllers

Guaranteed Margins for LQG Regulators

JOHN C. DOYLE

Abstract-There are none.

INTRODUCTION

Considerable attention has been given lately to the issue of robustness of linear-quadratic (LQ) regulators. The recent work by Safonov and Athans [1] has extended to the multivariable case the now well-known guarantee of 60° phase and 6 dB gain margin for such controllers. However, for even the single-input, single-output case there has remained the question of whether there exist any guaranteed margins for the full LQG (Kalman filter in the loop) regulator. By counterexample, this note answers that question; there are none.

[IEEE Transactions on Automatic Control, 23:4, 1978]

Example (Doyle & Stein, 1979)

Benign minimum-phase SISO plant (no fundamental limitations):

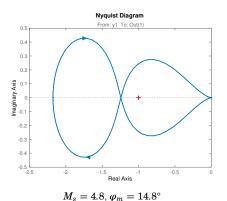
$$A=\begin{pmatrix} -4 & -3 \\ 1 & 0 \end{pmatrix}, \quad B=\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad N=\begin{pmatrix} -61 \\ 35 \end{pmatrix}, \quad C=\begin{pmatrix} 1 & 2 \end{pmatrix}$$

$$Q_1 = 80 \ egin{pmatrix} 1 & \sqrt{35} \\ \sqrt{35} & 35 \end{pmatrix}, \quad Q_2 = 1, \quad R_1 = 1, \quad R_2 = 1$$

gives

- ▶ Control poles: $-7 \pm 2i$
- ▶ Observer poles: $-7.02 \pm 1.95i$

Example (Doyle & Stein, 1979)



Loop transfer recovery

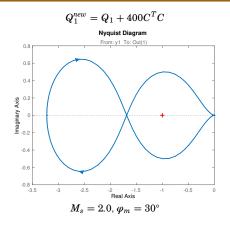
The robustness of an LQG controller can often be improved by either

- lacksquare adding a penalty proportional to $C^T\!C$ to Q_1
- $\,\blacktriangleright\,$ adding a penalty proportional to BB^T to NR_1N^T

Makes the loop transfer function more similar to the state feedback (LQ) loop gain

Price: Higher controller gain

Doyle & Stein's example with LTR

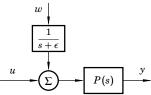


Lecture 11 - Outline

- 1. Tuning the LQG controller
- 2. Robustness of LQG
- 3. Integral action, reference values

Integral action via noise shaping

Extend the plant model with a low-frequency disturbance acting on the process input:



With a small ϵ , the Kalman filter (and hence also the resulting LQG controller) will include a near integrator

Integral action via explicit integration

Add explicit integrators $\dot{x_i}=r-y$ to track reference values without error. Gives extended plant model

$$\begin{pmatrix} \dot{x} \\ \dot{x}_i \end{pmatrix} = \begin{pmatrix} A & 0 \\ -C & 0 \end{pmatrix} \begin{pmatrix} x \\ x_i \end{pmatrix} + \begin{pmatrix} B \\ 0 \end{pmatrix} u + \begin{pmatrix} 0 \\ I \end{pmatrix} r + \begin{pmatrix} N \\ 0 \end{pmatrix} v_1$$

Extended state feedback law from LQ design:

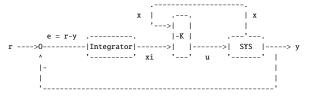
$$u = -\begin{pmatrix} L & L_i \end{pmatrix} \begin{pmatrix} x \\ x_i \end{pmatrix}$$

Including a penalty on x_i in the LQ design makes $y \to r$ in case of a constant load disturbance or step reference change

(Matlab: lqi, lqgtrack, lqg)

Linear-quadratic-integral control in Matlab

lqi computes an optimal state-feedback control law for the tracking loop shown below. For a plant SYS with state-space equations $dx/dt = Ax \, + \, Bu, \ y \, = \, Cx \, + \, Du, \ the \ state-feedback \ control \ is \ of \ the \ form \ u \, = \, - \, K \ [x; \ xi] \ where \ xi \ is \ the \ integrator \ output.$



[K,S,E]=1qi(SYS,Q,R,N) calculates the optimal gain matrix K given a state-space model SYS of the plant and weighting matrices Q,R,N. The control law u=-K z=-K [x;xi] minimizes the cost function

$$J(u) = Integral \{z'Qz + u'Ru + 2*z'Nu\}$$

Reference handling without integration

Simple solution using feedforward from r:

$$u(t) = -L\hat{x}(t) + L_r r(t)$$

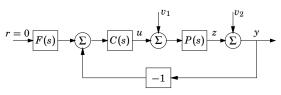
Assuming we want to achieve y = r, select

$$L_r = [C(BL - A)^{-1}B]^{-1}$$

to ensure static gain I from r to y

A reference filter to further shape $G_{\gamma r}(s)$ can be added if needed

LQG example — Control of DC-servo



Process: $P(s) = \frac{20}{s(s+1)}$

Cost function: $J = \mathrm{E}\left(z^2 + u^2\right)$

White noise intensities: $R_1=1,\,R_2=1,\,R_{12}=0$

LQG design

State-space model:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}}_{Q} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \underbrace{\begin{bmatrix} 20 \\ 0 \end{bmatrix}}_{Q} u + \underbrace{\begin{bmatrix} 20 \\ 0 \end{bmatrix}}_{Q} v_1$$
$$y = \underbrace{\begin{bmatrix} 0 & 1 \end{bmatrix}}_{Q} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + v_2 \qquad z = x_2$$

Cost matrices:

$$Q_1 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \qquad Q_2 = 1$$

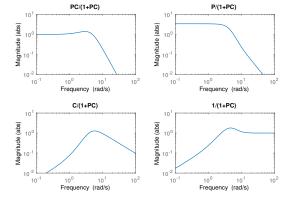
Solving the Riccati equations gives the optimal controller

$$\dot{\hat{x}} = (A - BL)\hat{x} + K(y - C\hat{x}) \qquad u = -L$$

where

$$L = \begin{bmatrix} 0.2702 & 0.7298 \end{bmatrix} \qquad K = \begin{bmatrix} 20.0000 \\ 5.4031 \end{bmatrix}$$

Gang of four



Nonzero static gain in $\frac{P}{1+PC}$ indicates poor low-freq. disturbance rejection

Integral action

Add explicit integrator $\dot{x}_i = r - y$ and extend the model (assuming r = 0):

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_i \end{bmatrix} = \overbrace{\begin{bmatrix} 0 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & -1 & 0 \end{bmatrix}}^{A_{\rm e}} \begin{bmatrix} x_1 \\ x_2 \\ x_i \end{bmatrix} + \overbrace{\begin{bmatrix} 20 \\ 0 \\ 0 \end{bmatrix}}^{B_{\rm e}} u + \overbrace{\begin{bmatrix} 20 \\ 0 \\ 0 \end{bmatrix}}^{N_{\rm e}} v_1$$

Minimization of E $(x_2^2 + 0.01x_i^2 + u^2)$ gives the optimal state feedback

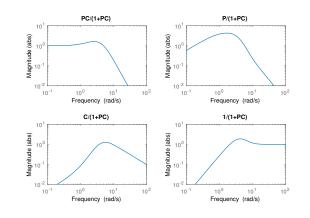
$$u = -L_e \begin{bmatrix} \hat{x} & x_i \end{bmatrix}$$

where

$$L_{\rm e} = \begin{bmatrix} 0.2751 & 0.7569 & -0.1 \end{bmatrix}$$

We can use the same Kalman filter as before (x_i needs not be estimated)

Gang of four with integral action



Matlab code for DC-servo example

A = [0 0; 1 -1]; B = [20; 0]; C = [0 1]; sys = ss(A,B,C,0); Q1 = C'*C; Q2 = 1; N = B; R1 = 1; R2 = 1;

%% Design LQG controller

Matlab code for DC-servo example, cont'd

```
\%\% Design LQG controller with integral action, version 1
Qi = 0.01;
Le = lqi(sys,blkdiag(Q1,Qi),Q2)
                                  % Calculate LQI feedback gain
sysk = ss(A,[B N],C,[0 0]);
                                  \% Define system with noise
obs = kalman(sysk,R1,R2);
                                   % Calculate Kalman filter
ctrl_i1 = lqgtrack(obs,Le,'1dof') % Form LQG regulator
```

 $\ensuremath{\text{\%}\text{M}}$ Design LQG controller with integral action, version 2 ctrl_i2 = lqg(sys,blkdiag(Q1,Q2),blkdiag(N*R1*N',R2),Qi,'1dof')

Summary of LQG

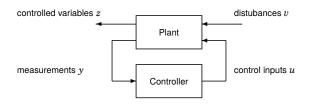
Advantages

- ► Works fine with multivariable models
- Observer structure ties to reality
- Always stabilizing
- ▶ Well developed theory, analytic solutions

Disadvantages

- ► High-order controllers (same order as the extended plant model)
- Sometimes hard to choose weights
- ▶ No robustness guarantees must always check the resulting controller!
- lacktriangle Quadratic criterion (H_2) not always the most suitable design requirement

Alternative norms for optimization



Common alternative: H_{∞} optimal control:

Minimize
$$\sup_{\omega} \|G_{zv}(i\omega)\|$$

Can be solved using a couple of Riccati equations, similar to the LQG problem (Matlab: hinfsyn)

Lecture 11 - summary

- ▶ LQG design can produce a stabilizing controller for any controllable and observable linear MIMO plant
- ► Cost function and noise model must be tuned to obtain the desired closed-loop performance
- ► No robustness guarantees always check the result!

Next section of the course: Optimization of controllers using numerical methods