
FRTN10 Multivariable Control, Lecture 10

Automatic Control LTH, 2017

Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach
9. Linear-quadratic control

10. Kalman filtering, LQG
11. More on LQG

L12-L14 Controller optimization: Numerical approach

Lecture 10 – Outline

1. Observer-based feedback

2. The Kalman filter

3. LQG

[Glad&Ljung sections 9.1–9.4 and 5.7]

Goal: Linear-quadratic-Gaussian control (LQG)

Plant

Controller

✛ ✛

✛

✲

control inputs u

controlled variables z

noisy
measurements y

white noise v

For a linear plant, let v be white noise of intensity R. Find a controller that
minimizes the output variance

E pzp2 = E
{

xT Q1 x+ 2xT Q12u+ uT Q2u
}

Previous lecture: State feedback solution (y = x, no meas. noise)
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Output feedback using an observer

Plant
✛

Observer✲

✛

−L
✛

✲

✛

v

u x̂y

z

Plant:

{

dx(t)
dt = Ax(t) + Bu(t) + Nv1(t)
y(t) = Cx(t) + v2(t)

Controller:

{

dx̂(t)
dt = Ax̂(t) + Bu(t) + K[y(t) − Cx̂(t)]

u(t) = −Lx̂(t)

Closed-loop dynamics

Eliminate u and y:

dx(t)
dt = Ax(t) − BLx̂(t) + Nv1(t)

dx̂(t)
dt = Ax̂(t) − BLx̂(t) + K[Cx(t) − Cx̂(t)] + Kv2(t)

Introduce the observer error x̃ = x− x̂

d
dt

[

x(t)
x̃(t)

]

=

[

A− BL BL
0 A− KC

] [

x(t)
x̃(t)

]

+

[

Nv1(t)
Nv1(t) − Kv2(t)

]

How to optimize the observer?
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Rudolf E. Kálmán, 1930–2016

Recipient of the 2008 Charles Stark Draper Prize from the US National
Academy of Engineering “for the devlopment and dissemination of the
optimal digital technique (known as the Kalman Filter) that is pervasively
used to control a vast array of consumer, health, commercial and defense
products.”

Optimal filtering and prediction

◮ Wiener (1949): Stationary input-output formulation
◮ Kalman (1960): Time-varying state-space formulation (discrete time)

[“A new approach to linear filtering and prediction problems”, Transactions of
ASME–Journal of Basic Engineering, 82]

General problem: Estimate x(k+m) given {y(i), u(i) p i ≤ k}
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Examples

Smoothing To estimate the Wednesday temperature based on
measurements from Tuesday, Wednesday and Thursday

Filtering To estimate the Wednesday temperature based on
measurements from Monday, Tuesday and Wednesday

Prediction To predict the Wednesday temperature based on
measurements from Sunday, Monday and Tuesday

The optimal observer problem

The observer error dynamics are given by

dx̃
dt = (A− KC)x̃+


N −K





v1

v2




The noise v =

v1

v2


 is assumed white with (co)intensity


 R1 R12

RT
12 R2


 > 0

Optimization problem: Assuming that the system is observable1, find the
gain K that minimizes the stationary error covariance

P = E x̃ x̃T

1detectable is sufficient, see G&L

Finding the optimal observer gain

The stationary error covariance P is given by the Lyapunov equation

(A− KC)P + P(A− KC)T +

N −K





 R1 R12

RT
12 R2





 NT

−KT


 = 0

Completing the square,

AP+PAT+N R1 NT+(K R2−PCT−N R12)R−1
2 (K R2−PCT−N R12)

T

−(PCT+N R12)R2(PCT+N R12) = 0

we find that the minimium variance is attained for

K = (PCT + N R12)R−1
2

What remains is an algebraic Riccati equation,

AP+ PAT + N R1 NT −(PCT + N R12)R−1
2 (PCT + N R12)

T = 0

The Kalman filter

[G&L Theorem 5.4]

Given an observable linear plant disturbed by white noise,
{

ẋ = Ax+ Bu+ Nv1

y = Cx+ v2


 R1 R12

RT
12 R2


> 0

the optimal observer is given by

dx̂
dt = Ax̂+ Bu+ K(y− Cx̂)

where K is given by

K = (PCT + N R12)R−1
2

where P = E(x− x̂)(x− x̂)T > 0 is the solution to

AP+ PAT + N R1 NT −(PCT + N R12)R−1
2 (PCT + N R12)

T = 0

Remarks

The optimal observer gain does not depend on what state(s) we are
interested in. The Kalman filter produces the optimal estimate of all states
at the same time.

The optimal observer gain K is static since we are solving a steady-state
problem.

(The Kalman filter can also be derived for finite-horizon problems and problems
with time-varying system matrices. We then obtain a Riccati differential equation
for P(t) and a time-varying filter gain K(t))

Duality between state feedback and state estimation

State feedback State estimation

A AT

B CT

Q1 N R1 NT

Q2 R2

Q12 N R12

S P
L KT
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Kalman filter in Matlab (1)

lqe Kalman estimator design for continuous-time systems.

Given the system

.

x = Ax + Bu + Gw {State equation}

y = Cx + Du + v {Measurements}

with unbiased process noise w and measurement noise v with

covariances

E{ww’} = Q, E{vv’} = R, E{wv’} = N ,

[L,P,E] = lqe(A,G,C,Q,R,N) returns the observer gain matrix L

such that the stationary Kalman filter

.

x_e = Ax_e + Bu + L(y - Cx_e - Du)

produces an optimal state estimate x_e of x using the sensor

measurements y. The resulting Kalman estimator can be formed

with ESTIM.

Kalman filter in Matlab (2)

kalman Kalman state estimator.

[KEST,L,P] = kalman(SYS,QN,RN,NN) designs a Kalman estimator KEST for
the continuous- or discrete-time plant SYS. For continuous-time plants
.
x = Ax + Bu + Gw {State equation}
y = Cx + Du + Hw + v {Measurements}

with known inputs u, process disturbances w, and measurement noise v,
KEST uses [u(t);y(t)] to generate optimal estimates y_e(t),x_e(t) of
y(t),x(t) by:

.
x_e = Ax_e + Bu + L (y - Cx_e - Du)

|y_e| = | C | x_e + | D | u
|x_e| | I | | 0 |

kalman takes the state-space model SYS=SS(A,[B G],C,[D H]) and the
covariance matrices:

QN = E{ww’}, RN = E{vv’}, NN = E{wv’}.

Example 1 – Kalman filter for an integrator

ẋ(t) = v1(t) v1 is white noise with intensity R1

y(t) = x(t) + v2(t) v2 is white noise with intensity R2

dx̂
dt = Ax̂(t) + Bu(t) + K[y(t) − Cx̂(t)]

Riccati equation 0 = R1 − P2/R2 [ P =
√

R1 R2

Filter gain K = P/R2 =
√

R1/R2

Interpretation?

Example 2 – Tracking of a moving object

Position readings y = (y1, y2)
T with measurement noise:
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Measured position

Would like to estimate the true position

Example 2 – Tracking of a moving object

Dynamic model: Two double integrators driven by noise, ÿi = v1i

State vector: x =
(

pos1 vel1 pos2 vel2
)T

State-space model:

ẋ =




0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0




x+




0 0
1 0
0 0
0 1




v1

y =

1 0 0 0

0 0 1 0


 x+ v2

Fix R1 =
( 1 0

0 1
)

and design Kalman filter for different R2

Example 2 – Tracking of a moving object

Simulation of Kalman filter from initial condition x̂ =
(

0 0
)T
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Estimated position

Larger R2 gives better noise rejection but slower tracking
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Optimal output feedback – LQG

Plant
✛

Estimator✲

✛

−L
✛

✲

✛

v

u x̂y

z

Plant:

{

ẋ = Ax+ Bu+ Nv1

y = Cx+ v2


 R1 R12

RT
12 R2


> 0

Controller:

{

d
dt x̂(t) = Ax̂(t) + Bu(t) + K[y(t) − Cx̂(t)]
u(t) = −Lx̂(t)

Minimize
L, K

E pzp2 = E
(

xT Q1 x+ 2xT Q12u+ uT Q2u
)
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The separation principle

The following separation principle holds for linear systems with quadratic
cost and Gaussian white noise disturbances:

◮ The optimal state feedback gain L is independent of the state
uncertainty

◮ The optimal Kalman filter gain K is independent of the control
objective

This makes it possible to optimize L and K separately.

[See G&L Theorem 9.1 and Corollary 9.1 for more details]

Example – LQG control of an integrator

Consider the problem to minimize E(Q1 x2 + Q2u2) for
{

ẋ(t) = u(t) + v1(t)
y(t) = x(t) + v2(t)

R =
[

R1 0
0 R2

]

The observer-based controller
{

d
dt x̂(t) = Ax̂(t) + Bu(t) + K[y(t) − Cx̂(t)]
u(t) = −Lx̂(t)

is optimal with K and L computed as follows:

0 = Q1 − S2/Q2 [ S =
√

Q1Q2 [ L = S/Q2 =
√

Q1/Q2

0 = R1 − P2/R2 [ P =
√

R1 R2 [ K = P/R2 =
√

R1/R2

Example – Control of a LEGO segway

Essentially an inverted pendulum – classical control problem

Sensors: Accelerometer, gyroscope

Actuators: DC motors

Sensor fusion

The two sensors have very different characteristics:

◮ The accelerometer is good for measuring the steady-state angle but
very sensitive to disturbances at higher frequencies

◮ The gyroscope can measure the angular speed and track fast
movements, but due to drift it cannot track the steady-state angle

Solution: Sensor fusion using Kalman filter

Modeling for LQG design

r lr
u

Σ
Σ

ΣΣ

v

w1 w2

G1 G2

θ
θ̇

y1

y2

Process

Kalman

x̂
−L

◮ v, w1, w2 – white noise sources
◮ G1(s) = s+a

s/N+a – models the inaccuary of the accelerometer

◮ G2(s) = s+b
s – models the incaccuary of the gyroscope

Lecture 10 – summary

◮ Observer-based feedback
◮ The Kalman filter – an optimal observer
◮ LQG by separation (LQ state feedback + Kalman filter)

Next lecture: More on LQG:

◮ Robustness of LQG?
◮ How to choose the design weights Q and R?
◮ How to handle reference signals and integral action?
◮ Examples
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