
FRTN10 Multivariable Control, Lecture 9

Automatic Control LTH, 2017

Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach
9. Linear-quadratic control

10. Kalman filtering, LQG
11. More on LQG

L12-L14 Controller optimization: Numerical approach

Lecture 9 – Outline

1. Dynamic programming

2. The Riccati equation

3. Optimal state feedback

4. Stability and robustness

Sections 9.1–9.4 + 5.7 in the book treat essentially the same material as
we cover in lectures 9–11. However, the main derivation of the LQG
controller in 9.A and 18.5 is different.

A general optimization setup

Plant

Controller

✛ ✛

✛

✲
control inputs u

controlled variables z

measurements y

distubances w

The objective is to find a controller that optimizes the transfer matrix
Gzw(s) from disturbances (and setpoints) w to controlled outputs z.

Lectures 9–11: Problems with analytic solutions
Lectures 12–14: Problems with numeric solutions

Today’s problem: Optimal state feedback

Plant

Controller

✛ ✛

✛

✲

u

z x0

state x

Minimize J = z2 =
∫∞

0


x(t)

u(t)




T 
 Q1 Q12

QT
12 Q2





x(t)

u(t)


 dt

subject to ẋ(t) = Ax(t) + Bu(t), x(0) = x0

Q =

 Q1 Q12

QT
12 Q2


 > 0 is a symmetric weighting matrix (design parameter)

Why linear-quadratic control?

◮ Simple, analytic solution
◮ Quadratic cost function gives linear state feedback control law

◮ Always stabilizing

◮ Works for MIMO systems

◮ Guaranteed robustness (in the state feedback case)

◮ Foundation for more advanced methods like model-predictive control
(MPC)
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Mini-problem

Determine u0 and u1 if the objective is to minimize

x2
1 + x2

2 + u2
0 + u2

1

when

x1 = x0 + u0

x2 = x1 + u1

Hint: Go backwards in time.
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Solution to mini-problem

Break the problem into smaller parts that can be solved sequentially:

min
u0,u1

{

x2
1 + x2

2 + u2
0 + u2

1
}

= min
u0

{

x2
1 + u2

0 +min
u1

{

x2
2 + u2

1
}

(x1)
︸ ︷︷ ︸

J1(x1)

}

J1(x1) = min
u1

{

(x1+u1)2 + u2
1
}

= min
u1

{

2
(

u1+ 1
2 x1

)2 + 1
2 x2

1

}

= 1
2 x2

1 with minimum attained for u1 = −1
2 x1

J0(x0) = min
u0

{

(x0+u0)2 + u2
0 + J1(x)

}

= min
u0

{

5
2
(

u0+ 3
5 x0

)2 + 3
5 x2

0

}

= 3
5 x2

0 with minimum attained for u0 = −3
5 x0

Quadratic optimal cost

It can be shown that the optimal cost on the time interval [t, ∞) is
quadratic:

min
u[t,∞)

∫∞

t


x(τ)

u(τ)




T
Q


x(τ)

u(τ)


 dτ = xT(t)Sx(t), S = ST > 0

when
ẋ(t) = Ax(t) + Bu(t)

and

Q =

 Q1 Q12

QT
12 Q2


 > 0

Dynamic programming, Richard E. Bellman, 1957

t t+ ε T

An optimal trajectory on the time interval
[t, T]must be optimal also on each of the
subintervals [t, t+ ε] and [t+ ε, T].

Dynamic programming in linear-quadratic control

Let xt = x(t), ut = u(t). For a time step of length ε,

x(t+ ε) = xt + (Axt + But)ε as ε → 0

xT
t Sxt = min

u[t,∞)

∫∞

t


x(τ)

u(τ)




T
Q


x(τ)

u(τ)


 dτ

= min
u[t,∞)

{
xt

ut




T
Q


xt

ut


ε +

∫∞

t+ε


x(τ)

u(τ)




T
Q


x(τ)

u(τ)


 dτ

}

= min
ut

{

(

xT
t Q1 xt + 2xT

t Q12ut + uT
t Q2ut

)

ε

+
[

xt + (Axt + But)ε
]T

S
[

xt + (Axt + But)ε
]

}

by definition of S. Neglecting ε2 gives Bellman’s equation:

0 = min
ut

{(

xT
t Q1 xt + 2xT

t Q12ut + uT
t Q2ut

)

+ 2xT
t S

(

Axt + But
)

}
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Completion of squares

Suppose Qu > 0. Then

xT Qx x+ 2xT Qxuu+ uT Quu
= (u+ Q−1

u QT
xu x)T Qu(u+ Q−1

u QT
xu x) + xT(Qx − QxuQ−1

u QT
xu)x

is minimized by
u = −Q−1

u QT
xu x

The minimum is
xT(Qx − QxuQ−1

u QT
xu)x

The Riccati equation

Completion of squares in Bellman’s equation gives

0 = min
ut

{(

xT
t Q1 xt + 2xT

t Q12ut + uT
t Q2ut

)

+ 2xT
t S

(

Axt + But
)

}

= min
ut

{

xT
t [Q1 + AT S + S A]xt + 2xT

t [Q12 + SB]ut + uT
t Q2ut

}

= xT
t

(

Q1 + AT S + S A− (SB+ Q12)Q−1
2 (SB+ Q12)T

)

xt

with minimum attained for

ut = −Q−1
2 (SB+ Q12)T xt

The equation

0 = Q1 + AT S + S A− (SB+ Q12)Q−1
2 (SB+ Q12)T

is called the algebraic Riccati equation

Jocopo Francesco Riccati, 1676–1754
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Solving algebraic Riccati equations in Matlab

care Solve continuous-time algebraic Riccati equations.

[X,L,G] = care(A,B,Q,R,S,E) computes the unique stabilizing

solution X of the continuous-time algebraic Riccati equation

-1

A’XE + E’XA - (E’XB + S)R (B’XE + S’) + Q = 0 .

When omitted, R, S and E are set to the default values R=I,

S=0, and E=I. Beside the solution X, care also returns the

gain matrix

-1

G = R (B’XE + S’)

and the vector L of closed-loop eigenvalues (i.e.,

EIG(A-B*G,E)).
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Linear-quadratic optimal control

Control problem:

Minimize
∫∞

0

(

xT(t)Q1 x(t) + 2xT(t)Q12u(t) + uT(t)Q2u(t)
)

dt

subject to ẋ(t) = Ax(t) + Bu(t), x(0) = x0

Solution: Assume (A, B) controllable1. Then there is a unique S > 0
solving the algebraic Riccati equation

0 = Q1 + AT S + S A− (SB+ Q12)Q−1
2 (SB+ Q12)T

The optimal control law is u = −Lx with L = Q−1
2 (SB+ Q12)T .

The minimal cost is xT
0 Sx0.

1stabilizable is sufficient, see G&L

Remarks

Note that the optimal control law does not depend on x0.

The optimal feedback gain L is static since we are solving an
infinite-horizon problem.

(LQ theory can also be applied to finite-horizon problems and problems with
time-varying system matrices. We then obtain a Riccati differential equation for
S(t) and a time-varying state feedback, u(t) = −L(t)x(t))

Example: Control of an integrator

For ẋ(t) = u(t), x(0) = x0,

Minimize J =
∫∞

0

{

x(t)2 + ρu(t)2
}

dt

Riccati equation 0 = 1− S2/ρ [ S = √ρ

Controller L = S/ρ = 1/√ρ [ u = −x/√ρ

Closed loop system ẋ = −x/√ρ [ x = x0e−t/√ρ

Optimal cost J∗ = xT
0 Sx0 = x2

0
√ρ

What values of ρ give the fastest response? Why?

Solving the LQ problem in Matlab

lqr Linear-quadratic regulator design for state space systems

[K,S,E] = lqr(SYS,Q,R,N) calculates the optimal gain matrix K

such that:

* For a continuous-time state-space model SYS, the state-

feedback law u = -Kx minimizes the cost function

J = Integral {x’Qx + u’Ru + 2*x’Nu} dt

subject to the system dynamics dx/dt = Ax + Bu

The matrix N is set to zero when omitted. Also returned are

the solution S of the associated algebraic Riccati equation

and the closed-loop eigenvalues E = EIG(A-B*K).

Example – Double integrator

A =

0 1

0 0


 B =


0

1


 Q1 =


1 0

0 0


 Q2 = ρ x(0) =


1

0




States and inputs (dotted) for ρ = 0.01, ρ = 0.1, ρ = 1, ρ = 10
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Closed loop poles:
s = 2−1/2ρ−1/4(−1± i)
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Stochastic interpretation of LQ control

Plant

Controller

✛ ✛

✛

✲

u

z white noise v

state x

Minimize J = E z2 = E
{

xT Q1 x+ 2xT Q12u+ uT Q2u
}

subject to ẋ(t) = Ax(t) + Bu(t) + v(t)

where v is white noise with intensity R. Same Riccati equation and
solution S as in the deterministic case. The optimal cost is

J∗ = tr(S R)

where tr denotes matrix trace.
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Stability of the closed-loop system

Assume that

Q =

 Q1 Q12

QT
12 Q2


 > 0

and that there exists a solution S > 0 to the algebraic Riccati equation.
Then the optimal controller u(t) = −Lx(t) gives an asymptotically stable
closed-loop system ẋ(t) = (A− BL)x(t).
Proof:

d
dt xT(t)Sx(t) = 2xT Sẋ = 2xT S(Ax+ Bu)

= −
(

xT Q1 x+ 2xT Q12u+ uT Q2u
)

< 0 for x(t) ,= 0

Hence xT(t)Sx(t) is decreasing and tends to zero as t →∞.

Robustness of optimal state feedback
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Nyquist Diagram
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The distance from the loop gain L(iω I − A)−1B to −1 is never smaller
than 1. This is always true(!) when Q1 > 0, Q12 = 0 and Q2 > 0 is
scalar. The phase margin is at least 60○ and the gain margin is infinite!

[For proof, see G&L Section 9.4]

Lecture 9 – summary

◮ We specify what “optimal” means using a quadratic cost function.
◮ Solving an algebraic Riccati equation gives the optimal state

feedback law u = −Lx:

0 = Q1 + AT S + S A− (SB+ Q12)Q−1
2 (SB+ Q12)T [ S

L = Q−1
2 (SB+ Q12)−1

◮ The LQ controller has remarkable robustness properties.
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