

Time delays - intuitive reasoning

Assume that the system contains a time-delay T. This means a disturbance is not visible in the output signal until after at least ${\boldsymbol{T}}$ time units. This puts a hard constraint on how quickly a feedback controller can reject the disturbance!

Conclusion: A time delay T give an upper bound on the speed of the closed loop. The cross-over frequency has to fulfill

 $\omega_c \lesssim \frac{1}{T}$

Bike example, cont'd

 $J=120~{\rm kgm}^2$

 $g=9.81~{\rm ms}^{-2}$

$$J\frac{d^{2}\theta}{dt^{2}} = mg\ell\theta + \frac{mV_{0}\ell}{b}\left(V_{0}\beta + a\frac{d\beta}{dt}\right)$$

where the physical parameters have typical values as follows:

Mass:	$m=70~{\rm kg}$
Distance rear-to-center:	a = 0.3 m
Height over ground:	$\ell = 1.2 \text{ m}$
Distance center-to-front:	$b=0.7~{\rm m}$
Moment of inertia:	J = 120 kgm
Speed:	$V_0=5~{\rm ms}^{-1}$
Acceleration of gravity:	g = 9.81 ms

The transfer function from β to θ is

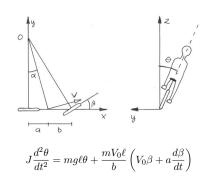
$$P(s) = \frac{mV_0\ell}{b} \frac{as + V_0}{Js^2 - mg\ell}$$

Lecture 7 – Outline

3. Limitations from unstable poles and RHP zeros: Hard proofs

Bike example

A (linearized) torque balance can be written as



Bike example, cont'd

The system has an unstable pole p with time-constant

$$p^{-1} = \sqrt{\frac{J}{mg\ell}} \approx 0.4 \ \mathrm{s}$$

The closed loop system must be at least as fast as this. Moreover, the transfer function has a zero \boldsymbol{z} with

 $z^{-1} = -\frac{a}{V_0} \approx -\frac{0.3 \text{ m}}{V_0}$

For the back-wheel steered bike we have the same poles but different sign of V_0 and the zero will thus be in the RHP!

An unstable pole-zero cancellation occurs for $V_0 \approx 0.75$ m/s.

Sensitivity bounds from unstable poles/RHP zeros

The sensitivity function must be $1 \mbox{ at a RHP zero } z :$

$$P(z) = 0 \qquad \Rightarrow \qquad S(z) := \frac{1}{1 + \underbrace{P(z)}_{0} C(z)} = 1$$

Similarly, the complementary sensitivity function must be 1 at an unstable pole p:

$$P(p) = \infty \qquad \Rightarrow \qquad T(p) := \frac{P(p)C(p)}{1 + P(p)C(p)} = 1$$

The Maximum Modulus Theorem

Consequences of the Maximum Modulus Theorem

Consequence for system with RHP zero z:

$$M_s = \sup_{\omega} |S(i\omega)| = \sup_{\mathsf{Re}\, s \ge 0} |S(s)| \ge |S(z)| = 1$$

More interesting to use a weighting function:

 $\sup_{\omega}|W_S(i\omega)S(i\omega)| = \sup_{\operatorname{Re} s \geq 0}|W_S(s)S(s)| \geq |W_S(z)|$

Similar calculations can be done relating unstable poles and T(s).

3

Suppose that all poles of the rational function G(s) have negative real

 $\sup_{\operatorname{Re} s\geq 0} |G(s)| = \sup_{\omega\in \mathbf{R}} |G(i\omega)|$

part. Then

Consequences of the Maximum Modulus Theorem

Example: Hard limitation from RHP zero

Assume that $W_S(s)$ and $W_T(s)$ are stable transfer functions. Then we have the following ${\bf necessary}$ conditions:

The specification

 $\|W_SS\|_\infty \leq 1$ is only possible to meet if $|W_S(z_i)| \leq 1$ for all RHP zeros z_i

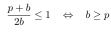
The specification

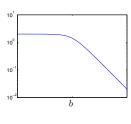
 $||W_T T||_{\infty} \le 1$

is only possible to meet if $|W_T(p_i)| \leq 1$ for all unstable poles p_i

Example: Hard limitation from unstable pole

Assume the complementary sensitivity specification $W_T = \frac{s+b}{2b}, b>0$ If the plant has an unstable pole p, then the specification is possible to meet only if



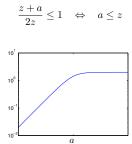


Lecture 7 – summary

- Bode's Relation and Bode's Integral Formula
- Limitations from unstable poles, RHP zeros and time delays
 - Intuition
 - Rules of thumb for achievable ω_c
- Limitations from unstable poles/zeros: Hard proofs using Maximum Modulus Theorem
- A back-wheel steered bicyle pole and zero i RHP

Assume the sensitivity specification $W_S = \frac{s+a}{2s}, \ a > 0.$

If the plant has a RHP zero in $\boldsymbol{z},$ then the specification possible to meet only if



RHP zero and unstable pole

For a system with both RHP zero \boldsymbol{z} and unstable pole \boldsymbol{p} it can be shown that

$$M_s = \sup_{\omega} |S(i\omega)| \ge \left|\frac{z+p}{z-p}\right|$$

(See lecture notes for details)

If $p\approx z$ the sensitivity function must have a high peak for every controller C.

Example: Bicycle with rear wheel steering

$$\frac{\theta(s)}{\delta(s)} = \frac{am\ell V_0}{bJ} \cdot \frac{(-s + V_0/a)}{(s^2 - mg\ell/J)}$$