
FRTN10 Multivariable Control, Lecture 7

Automatic Control LTH, 2017
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L1-L5 Specifications, models and loop-shaping by hand

L6-L8 Limitations on achievable performance

6. Controllability, observability, multivariable zeros
7. Fundamental limitations
8. Multivariable and decentralized control

L9-L11 Controller optimization: Analytic approach
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Lecture 7 – Outline

1. Bode’s Relation and Bode’s Integral Theorem

2. Limitations from unstable poles, RHP zeros and delays: Intuition

3. Limitations from unstable poles and RHP zeros: Hard proofs

[Glad & Ljung: 7.2–7.9]

Limitations in control design

What we already know:

◮ Model errors, measurement noise, control signal limitations ⇒
upper limit on achievable bandwidth

◮ S + T = 1 ⇒
|S(iω)| + |T (iω)| ≥ 1∣∣|S(iω)| − |T (iω)|

∣∣ ≤ 1

◮ Some modes may be impossible to control or observe due to lack
of controllability or observability

Limitations in control design

Fundamental limitations:

◮ Bode’s Relation: amplitude and phase are coupled

◮ Bode’s Integral Theorem: |S(iω)| cannot be made small
everywhere

◮ Limitations from unstable poles

◮ Limitations from right-half-plane (RHP) zeros

◮ Limitations from time delays
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Recall: Loop shaping design

The loop transfer function L = PC should be made large at low
frequencies and small at high frequencies:
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How quickly can we make the transition from high to low gain and still
retain a good phase margin?

Bode’s Relation — approximate version

If G(s) is rational and stable with no RHP zeros, then

arg G(iω) ≈ π

2
d log |G(iω)|

d log ω

(Otherwise the phase is smaller – non-minimum phase)

Consequence:

To have 30◦—60◦ phase margin, the downward slope of the amplitude
curve should be approximately between 1.3 and 1.7 at the crossover
frequency.
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Bode’s Relation — exact version

If G(s) is rational and stable with no RHP zeros, then

arg G(iω0) = 2ω0
π

∫ ∞

0

log |G(iω)| − log |G(iω0)|
ω2 − ω2

0
dω

= 1
π

∫ ∞

0

d log |G(iω)|
d log ω

log
∣∣∣ω + ω0
ω − ω0

∣∣∣
︸ ︷︷ ︸
weighting function

d log ω
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Bode’s Integral Theorem – stable case

For a stable system with loop gain with relative degree ≥ 2 the
following conservation law for the sensitivity function holds:

∫ ∞

0
log |S(iω)|dω = 0

(Sometimes known as the "waterbed effect")

Example

P-control of (s2 + s + 1)−1
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Bode’s Integral Theorem – general case

For a system with loop gain with relative degree ≥ 2 and unstable
poles p1, . . . , pM , the following conservation law for the sensitivity
function holds:

∫ ∞

0
log |S(iω)|dω = π

M∑

i=1
Re(pi)

(See G&L Theorem 7.3 for details)

A similar condition relating T and RHP zeros exists, see G&L
Theorem 7.5)

G. Stein: "Conservation of dirt!"

Picture from Gunter Stein’s Bode Lecture (1985) “Respect the unstable”.
Reprint in IEEE Control Systems Magazine, Aug 2003.
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Unstable poles – intuitive reasoning

An unstable pole p makes the output signal grow exponentially
as ∼ ept for a bounded input. To stabilize this system, one has to act
fast, on a time scale ∼ 1/p.

Conclusion: An unstable pole p gives a lower bound on the speed of
the closed loop. The cross-over frequency has to fulfill

ωc & p

RHP zeros – intuitive reasoning

The step response of a system with a right-half-plane zero has an
undershoot. The effect is more severe if the zero is close to the origin.
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Conclusion: A RHP zero z gives an upper bound on the speed of the
closed loop. The cross-over frequency has to fulfill ωc . z.
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Time delays – intuitive reasoning

Assume that the system contains a time-delay T . This means a
disturbance is not visible in the output signal until after at least T time
units. This puts a hard constraint on how quickly a feedback controller
can reject the disturbance!

Conclusion: A time delay T give an upper bound on the speed of the
closed loop. The cross-over frequency has to fulfill

ωc .
1
T

Bike example

A (linearized) torque balance can be written as

J
d2θ

dt2 = mgℓθ + mV0ℓ

b

(
V0β + a

dβ

dt

)

Bike example, cont’d

J
d2θ

dt2 = mgℓθ + mV0ℓ

b

(
V0β + a

dβ

dt

)

where the physical parameters have typical values as follows:

Mass: m = 70 kg
Distance rear-to-center: a = 0.3 m
Height over ground: ℓ = 1.2 m
Distance center-to-front: b = 0.7 m
Moment of inertia: J = 120 kgm2

Speed: V0 = 5 ms−1

Acceleration of gravity: g = 9.81 ms−2

The transfer function from β to θ is

P (s) = mV0ℓ

b

as + V0
Js2 − mgℓ

Bike example, cont’d

The system has an unstable pole p with time-constant

p−1 =
√

J

mgℓ
≈ 0.4 s

The closed loop system must be at least as fast as this. Moreover, the
transfer function has a zero z with

z−1 = − a

V0
≈ −0.3 m

V0

For the back-wheel steered bike we have the same poles but different
sign of V0 and the zero will thus be in the RHP!

An unstable pole-zero cancellation occurs for V0 ≈ 0.75 m/s.
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Sensitivity bounds from unstable poles/RHP zeros

The sensitivity function must be 1 at a RHP zero z:

P (z) = 0 ⇒ S(z) := 1
1 + P (z)︸ ︷︷ ︸

0

C(z) = 1

Similarly, the complementary sensitivity function must be 1 at an
unstable pole p:

P (p) = ∞ ⇒ T (p) := P (p)C(p)
1 + P (p)C(p) = 1

The Maximum Modulus Theorem

Suppose that all poles of the rational function G(s) have negative real
part. Then

sup
Re s≥0

|G(s)| = sup
ω∈R

|G(iω)|

Consequences of the Maximum Modulus Theorem

Consequence for system with RHP zero z:

Ms = sup
ω

|S(iω)| = sup
Re s≥0

|S(s)| ≥ |S(z)| = 1

More interesting to use a weighting function:

sup
ω

|WS(iω)S(iω)| = sup
Re s≥0

|WS(s)S(s)| ≥ |WS(z)|

Similar calculations can be done relating unstable poles and T (s).
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Consequences of the Maximum Modulus Theorem

Assume that WS(s) and WT (s) are stable transfer functions. Then we
have the following necessary conditions:

◮ The specification
‖WSS‖∞ ≤ 1

is only possible to meet if |WS(zi)| ≤ 1 for all RHP zeros zi

◮ The specification
‖WT T‖∞ ≤ 1

is only possible to meet if |WT (pi)| ≤ 1 for all unstable poles pi

Example: Hard limitation from RHP zero

Assume the sensitivity specification WS = s+a
2s , a > 0.

If the plant has a RHP zero in z, then the specification possible to
meet only if

z + a

2z
≤ 1 ⇔ a ≤ z
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Example: Hard limitation from unstable pole

Assume the complementary sensitivity specification WT = s+b
2b , b > 0

If the plant has an unstable pole p, then the specification is possible to
meet only if

p + b

2b
≤ 1 ⇔ b ≥ p
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RHP zero and unstable pole

For a system with both RHP zero z and unstable pole p it can be
shown that

Ms = sup
ω

|S(iω)| ≥
∣∣∣∣
z + p

z − p

∣∣∣∣

(See lecture notes for details)

If p ≈ z the sensitivity function must have a high peak for every
controller C.

Example: Bicycle with rear wheel steering

θ(s)
δ(s) = amℓV0

bJ
· (−s + V0/a)

(s2 − mgℓ/J)

Lecture 7 – summary

◮ Bode’s Relation and Bode’s Integral Formula

◮ Limitations from unstable poles, RHP zeros and time delays
◮ Intuition
◮ Rules of thumb for achievable ωc

◮ Limitations from unstable poles/zeros: Hard proofs using
Maximum Modulus Theorem

◮ A back-wheel steered bicyle – pole and zero i RHP
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