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Lecture 4 – Outline

Frequency domain specifications

Loop shaping

Feedforward design

[Glad & Ljung] Ch. 6.4–6.6, 8.1–8.2
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Design specifications

Find a controller that

A: reduces the effect of load disturbances

B: does not inject too much measurement noise into the system

C: makes the closed loop insensitive to process variations

D: makes the output follow the setpoint

If possible, use a controller with two degrees of freedom, i.e.
separate signal transmission from y to u and from r to u. This gives a
nice separation of the design problem:

1. Design feedback to deal with A, B, and C

2. Design feedforward to deal with D

Time-domain specifications

Specifications on e.g. step responses
(w.r.t. reference, load disturbance)

◮ Rise-time Tr

◮ Overshoot M

◮ Settling time Ts

◮ Static error e0
◮ . . .
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Stochastic time-domain specifications

◮ Output variance

◮ Control signal variance

◮ . . .
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Frequency-domain specifications

Open-loop specifications

◮ Amplitude margin Am,
phase margin ϕm

◮ Cross-over frequency ωc

◮ Ms circle in Nyquist diagram

◮ . . .
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Closed-loop specifications, e.g.

◮ resonance peak Mp

◮ bandwidth ωB

◮ . . .
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Frequency domain specifications

Closed-loop specifications, cont’d:
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Desired properties:

◮ Fast tracking of setpoint r

◮ Small influence of load disturbance d on z

◮ Small influence of model errors on z

◮ Limited amplification of noise n in control u

◮ Robust stability despite model errors

Frequency domain specifications

Ideally, we would like to design the controller (C and F ) so that

◮
PCF
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= 1
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P
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S + T = 1 and other constraints makes this is impossible to achieve.

Typical compromise:

◮ Make T small at high frequencies (ω > ωB)

◮ Make S small at low frequencies (+ possibly other disturbance
dominated frequencies)

Expressing specifications on S and T

Maximum sensitivity specifications, e.g.,

◮ ‖S‖∞ ≤ Ms

◮ ‖T‖∞ ≤ Mt

Frequency-weighted specifications, e.g.,

◮ ‖WSS‖∞ ≤ 1 or |S(iω)| ≤ |W −1
S (iω)|, ∀ω

◮ ‖WT T‖∞ ≤ 1 or |T (iω)| ≤ |W −1
T (iω)|, ∀ω

where WS(s) and WT (s) are stable transfer functions

Piecewise specifications, e.g.

◮ |S(iω)| < 0.2
ω , ω ≤ 10 and |S(iω)| < 2, ω > 10

Specifications on S and T – example

W −1
S (s) = 2s

s + 10 , W −1
T (s) = 140

s + 100
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Limitations on specifications

The specifications cannot be chosen independently of each other:

◮ S + T = 1 ⇒
|S| + |T | ≥ 1∣∣|S| − |T |

∣∣ ≤ 1

Fundamental limitations (Lecture 7):

◮ RHP zero at z ⇒ ω0S ≤ z/2
◮ Time delay T ⇒ ω0S ≤ 1/T

◮ RHP pole at p ⇒ ω0T ≥ 2p

Bode’s integral theorem:

◮ The "waterbed effect"

Bode’s relation:

◮ good phase margin requires certain
distance between ω0S and ω0T

ω

ω

|W −1
S |

|W −1
T |

Ms

Mt

1

1
w0S

w0T

Lecture 4 – Outline

Frequency domain specifications

Loop shaping

Feedforward design

Loop shaping

Idea: Look at the loop gain L = G0 = PC for design and translate
specifications on S and T into specifications on L

S = 1
1 + L

≈ 1
L

if L is large

T = L

1 + L
≈ L if L is small

Classical loop shaping: Design C so that L = PC satisfies
constraints on S and T

◮ how are the specifications related?

◮ what to do with the region around cross-over frequency ωc

(where |L| ≈ 1)?

Sensitivity vs loop gain

S = 1
1 + L

|S(iω)| ≤ |W −1
S (iω)| ⇐⇒ |1 + L(iω)| > |WS(iω)|

For small frequencies, WS large =⇒ 1 + L large, and |L| ≈ |1 + L|.

|L(iω)| ≥ |WS(iω)| (approx.)
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Complementary sensitivity vs loop gain

T = L

1 + L

|T (iω)| ≤ |W −1
T (iω)| ⇐⇒ |L(iω)|

|1 + L(iω)| ≤ |W −1
T (iω)|

For large frequencies, W −1
T small =⇒ |T | ≈ |L|

|L(iω)| ≤ |W −1
T (iω)| (approx.)

Resulting constraints on loop gain L:

Approximations are inexact around cross-over frequency ωc. In this
region, focus is on stability margins (Am, ϕm)

Lead–lag compensation

Shape the loop gain L = PC using a compensator C = C1C2C3 . . .
composed of

◮ Gain
K

◮ Lag (phase retarding) elements

Clag(s) = s + a

s + a/M
, M > 1

◮ Lead (phase advancing) elements

Clead(s) = N
s + b

s + bN
, N > 1

Example:

C(s) = K
s + a

s + a/M
· N

s + b

s + bN

Lag filter

Glag(s) = s + a

s + a/M
, M > 1
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Special case: M = ∞ ⇒ integrator

Lead filter

Glead(s) = N
s + b

s + bN
, N > 1
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Properties of lead–lag filters

◮ Gain
◮ Translates the magnitude curve
◮ Does not change phase curve

◮ Lag element
◮ Reduces static error
◮ Reduces stability margin

◮ Lead element
◮ Increases speed (by increasing ωc)
◮ Increased phase

⇒ May improve stability

Iterative lead–lag design

Typical workflow:

◮ Adjust gain to obtain the desired cross-over frequency

◮ Add lag element to improve the low-frequency gain

◮ Add lead element to improve the phase margin

Adding a lead element and adjusting the gain affect the cross-over
frequency

Need to iterate!

Example of other compensation link:

Notch filter
s2 + 0.01s + 1

s2 + 2s + 1

Bode Diagram

Frequency (rad/sec)
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(E.g., supress measurement noise at specific frequency)
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Feedforward design

Feedforward design

Two common 2-DOF configurations:

(1) Σ
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Ideally, we would like the output to follow the setpoint perfectly, i.e.
y = r

Feedforward design (1)

Σ
r
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Perfect following requires

F = 1 + PC

PC
= T −1

In general impossible because of pole excess in T . Also

◮ T might contain non-minimum-phase factors that can/should not
be inverted

◮ u must typically satisfy some upper and lower limits

Feedforward design (1)
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Assume T minimum phase. An implementable choice of F is then

F (s) = 1 + P (s)C(s)
P (s)C(s)(sTf + 1)d

where d is large enough to make F proper

Feedforward design (2)

ΣΣ

r

Gm

Gff

C P

−1

uff

ym u y

Gm and Gff can be viewed as generators of the desired output ym

and the feedforward uff that corresponds to ym

For y to follow ym, select

Gff = Gm/P

Feedforward design (2)
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Since Gff = Gm/P should be stable, causal and proper we find that

◮ Unstable zeros of P must be zeros of Gm

◮ Time delays of P must be time delays of Gm

◮ The pole excess of Gm must not be smaller than the pole excess
of P

Take process limitations into account!

Feedforward design – example

Process:

P (s) = 1
(s + 1)4

Selected reference model:

Gm(s) = 1
(sTm + 1)4

Then

Gff (s) = Gm(s)
P (s) = (s + 1)4

(sTm + 1)4 G∞(∞) = 1
T 4

m

Fast response (small Tm) requires high gain in Gff .

Bounds on the control signal limit how fast response we can obtain in practice

Lecture 4 – summary

Frequency domain design:

◮ Good mapping between S, T and L = PC at low and high
frequencies (mapping around cross-over frequency less clear)

◮ Simple relation between C and L =⇒ easy to shape L

◮ Lead–lag design: iterative adjustment procedure
◮ What if specifications are not satisfied?

◮ we made a poor design (did not iterate enough), or
◮ the specifications are not feasible (see Lecture 7)

◮ Later in the course:
◮ Use optimization to find stabilizing controller that satisfies

constraints, if such a controller exists

Feedforward design
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