
FRTN10 Exercise 7. Controller Structures, Preparations

for Lab 2

Note: Exercises 7.1–7.3 serve as preparation for Laboratory Excercise 2.

7.1 a. Give the definition of RGA for a complex-valued, not necessarily square, matrix

A. How do you apply it to a process G(s) and what information can be

extracted in an automatic control perspective?

b. Let

G(s) =









1

s+ 2

10

s+ 1

1

s+ 5

5

s+ 3









.

Compute RGA(G(0)).

c. What input-output pairing would you recommend in a decentralised control

structure?

7.2 Consider the MIMO process

P(s) =
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.

Compute the relative gain array, RGA, of P(0) and suggest an input-output

pairing for the system based on this.

Hint: The inverse of P(s) is given by

P(s)−1 =

















s+ 1 0 0

−0.1(s+ 1) 0 s+ 1

0.01(s+ 1) s+ 10 −0.1(s+ 1)

















.

7.3 Figure 7.1 shows the quadruple-tank process that will be used in Lab 2. The

goal is to control the levels in the lower tanks (y1, y2) using the pumps (u1,

u2). For each tank i = 1 . . . 4, mass balance and Torricelli’s law give that

Ai
dhi

dt
= −ai

√

2�hi + qin (7.1)

where Ai is the cross-section of the tank, hi is the water level, ai is the

cross-section of the outlet hole, � is the acceleration of gravity, and qin is the

inflow to the tank. The non-linear equation (7.1) can be linearized around a

stationary point (h0
i , q0

in), giving the linear equation

Ai
d∆hi

dt
= −ai

√

�

2h0
i

∆hi + ∆qin (7.2)
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Figure 7.1 The quadruple-tank process.

where ∆hi = hi − h0
i , and ∆qin = qin − q0

in denote deviations around the

stationary point.

The flows from the pumps are divided according to two parameters γ1,γ2 ∈
(0, 1). The flow to Tank 1 is γ1k1u1 and the flow to Tank 4 is (1 − γ1)k1u1.

Symmetrically, the flow to Tank 2 is γ2k2u2 and the flow to Tank 3 is (1 −
γ2)k2u2.

a. Let ∆ui = ui−u0
i , ∆hi = hi− h0

i , and ∆yi = yi− y0
i . Verify that the linearized

dynamics of the complete quadruple-tank system are given by

d∆h1

dt
= −

a1

A1

√

�

2h0
1

∆h1 +
a3

A1

√

�

2h0
3

∆h3 +
γ1k1

A1

∆u1

d∆h2

dt
= −

a2

A2

√

�

2h0
2

∆h2 +
a4

A2

√

�

2h0
4

∆h4 +
γ2k2

A2

∆u2

d∆h3

dt
= −

a3

A3

√

�

2h0
3

∆h3 +
(1−γ2)k2

A3

∆u2

d∆h4

dt
= −

a4

A4

√

�

2h0
4

∆h4 +
(1−γ1)k1

A4

∆u1

Introduce the input vector, u, output vector, y, and state vector, x, as

u =









∆u1

∆u2








, x =



























∆h1

∆h2

∆h3

∆h4



























, y =









∆y1

∆y2








.
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Verify that the linearized system can be written in state-space form as

dx

dt
=
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0

0 −
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0
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0
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0

























































u,

y =









kc 0 0 0

0 kc 0 0








x,

where Ti =
Ai

ai

√

2h0
i

�
, and kc is a measurement constant.

b. Show that the transfer matrix from u to y is given by

P(s) =































γ1c1

1+ sT1

k2

k1

·

(1−γ2)c1

(1+ sT1)(1+ sT3)

k1

k2

·

(1−γ1)c2

(1+ sT2)(1+ sT4)

γ2c2

1+ sT2































where c1 = T1k1kc/A1 and c2 = T2k2kc/A2.

Hint: Use the fact that
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1

e
0
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1

f























































c. The zeros are given by the equation

det P(s) =
c1c2

(

γ1γ2(1+ sT3)(1+ sT4) − (1−γ1)(1−γ2)
)

(1+ sT1)(1+ sT2)(1+ sT3)(1+ sT4)
= 0

which is simplified to

(1+ sT3)(1+ sT4) −
(1−γ1)(1−γ2)

γ1γ2

= 0.

Show that the system is minimum phase (i.e., that both zeros are stable) if

1 < γ1+γ2 < 2, and that the system is non-minimum phase (i.e., that at least

one zero is unstable) if 0 < γ1 +γ2 < 1. Remember that γ1,γ2 ≥ 0.

Hint: A second-order polynomial has all of its roots in the left half plane if

and only if all coefficients have the same sign.

In the lab, we will first study the case γ1 = γ2 ( 0.7, and then the case

γ1 = γ2 ( 0.3. In which case will the process be more difficult to control?
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d. Show that the RGA for P(0) is given by









λ 1− λ

1− λ λ









where λ = γ1γ2/(γ1 +γ2 − 1).

Based on this RGA matrix, suggest an input-output pairing in the two cases

γ1 = γ2 ( 0.7 and γ1 = γ2 ( 0.3.

7.4 Consider the following multivariable system

(

y1

y2

)

=









1

10s+ 1

−2

2s+ 1

1

10s+ 1

s− 1

2s+ 1









(

u1

u2

)

.

a. By using RGA at stationarity, decide the input-output pairing that should be

used in a decentralized control structure.

b. Assume that we want to use decentralized control, that is, we want to use a

controller that can be described by

Fdiag(s) =

(

F11(s) 0

0 F22(s)

)

.

Also, we want the control loops to be decoupled in stationarity. Give the

structure of such a controller F(s) expressed in Fdiag(s) that is capable to do

so. Hint: Use a suitable decoupling matrix.

7.5 (*) ÏÍ In this exercise we will try to design controllers for a 2 $ 2-process,

that is, a process that has 2 inputs and 2 outputs. The process is described

by the transfer function matrix

G(s) =







4

s+ 1

3

3s+ 1
1

3s+ 1

2

s+ 0.5






.

Design two different decentralized controllers for the process.

1. Decentralized control, using the RGA of the process.

2. Decentralized control, using decoupling with respect to stationarity

In both cases, use ordinary PI controllers. Use the step responses to evaluate

the performance of the loop.
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Solutions to Exercise 7. Controller Structures,

Preparations for Lab 2

Note: Exercises 7.1–7.3 serve as preparation for Laboratory Excercise 2.

7.1 a. The relative gain array for a complex-valued matrix A is given by

RGA (A) = A .∗(A†)T

where † denotes the pseudo-inverse of A, and .∗ denotes element wise multi-

plication. For a process G(s) the RGA is most often computed for the DC-gain

G(0) and sometimes also the cross-over frequency G(iω c). By inspecting the

elements in the RGA-matrix, we get advice on what output should be con-

trolled using what input. We should choose pairings that have relative gains

close to 1 and avoid pairings that have negative relative gains.

b.

RGA(G(0)) = G(0) .∗G−T(0) =

(

−5
7

12
7

12
7

−5
7

)

c. Since we should avoid negative relative gains we should choose the pairing

y1 Q u2 and y2 Q u1.

7.2 We have

P(0) =

















1 0 0

0 0.01 0.1

0.1 1 0

















and

P(0)−1 =

















1 0 0

−0.1 0 1

0.01 10 −0.1

















RGA(P(0)) = P(0) .∗ (P(0)−1)T =

















1 0 0

0 0 1

0 1 0

















The RGA suggests that we should control output 1 with input 1, output 2

with input 3, and output 3 with input 2.

7.3 a. We see from the flow equation

Ai
d∆hi

dt
= −ai

√

�

2h0
i

∆hi + ∆qin (7.1)

that the outflow from tank i is

qout = ai

√

�

2h0
i

∆hi.
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The inflows into the tanks are found as the sum of the outflow from the tank

above and the flow from the pumps into the respective tanks. Writing down

equation (7.1) for each of the four tanks now gives the dynamics.

Substituting the time constants Ti into the dynamics, and arranging them

into matrix form then gives the state-space form.

b. The transfer matrix is given by

P(s) = C(sI − A)−1B =

=







kc 0 0 0

0 kc 0 0
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A3
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0

0 s+
1

T2

0 −
A4

A2T4

0 0 s+
1

T3

0

0 0 0 s+
1

T4













































−1 











































γ1 k1

A1

0

0
γ2 k2

A2

0
(1−γ2)k2

A3

(1−γ1)k1

A4

0













































=























γ1c1

1+ sT1

k2

k1

·

(1−γ2)c1

(1+ sT1)(1+ sT3)

k1

k2

·

(1−γ1)c2

(1+ sT2)(1+ sT4)

γ2c2

1+ sT2























c. The zeros are given by the equation

T3T4s2 + (T3 + T4)s+ 1−
(1−γ1)(1−γ2)

γ1γ2

= 0

The two first coefficients are always positive, since T3, T4 > 0. The last coeffi-

cient is positive (and both zeros are thus stable) iff

(1−γ1)(1−γ2)

γ1γ2

< 1 \ γ1 +γ2 > 1

In the case γ1 = γ2 = 0.7 we get a minimum-phase system which should

be easier to control than the non-minimum-phase system we get in the case

γ1 = γ2 = 0.3.

d. We have

P(0) =





















γ1c1

k2

k1

(1−γ2)c1

k1

k2

(1−γ1)c2 γ2c2





















and

P(0)−1 =
1

c1c2(γ1 +γ2 − 1)





















γ2c2 −
k2

k1

(1−γ2)c1

−
k1

k2

(1−γ1)c2 γ1c1
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RGA(P(0)) = P(0) .∗ (P(0)−1)T =

=
1

c1c2(γ1 +γ2 − 1)









γ1c1γ2c2 −(1−γ2)c1(1−γ1)c2

−(1−γ2)c1(1−γ1)c2 γ2c2γ1c1









=



















γ1γ2

γ1 +γ2 − 1
1−

γ1γ2

γ1 +γ2 − 1

1−
γ1γ2

γ1 +γ2 − 1

γ1γ2

γ1 +γ2 − 1



















=









λ 1− λ

1− λ λ









In the case γ1 = γ2 = 0.7 we get

RGA(P(0)) =









1.225 −0.225

−0.225 1.225









The RGA suggests we should control output 1 with input 1 and output 2 with

input 2.

In the case γ1 = γ2 = 0.3 we get

RGA(P(0)) =









−0.225 1.225

1.225 −0.225









The RGA suggests that in this case we should control output 1 with input 2

and output 2 with input 1.

7.4 a. We compute the RGA for stationarity, i.e. s = 0.

RGA(G(s)) =

( s−1
s+1

2
s+1

2
s+1

s−1
s+1

)

gives

RGA(G(0)) =

(

−1 2

2 −1

)

.

Since you should avoid pairing that gives negative diagonal elements we

choose y1 Q u2 and y2 Q u1.

b. We have that

G(0) =

(

1 −2

1 −1

)

Using a decoupled controller structure with W1 = G−1(0) and W2 = I we get

a decoupled system in stationarity. (See Glad&Ljung ch. 8.3.) The controller

is

F(s) = W1 Fdiag(s)W2 =

(

−F11(s) 2F22(s)

−F11(s) F22(s)

)

.
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Figure 7.1 Decentralized control

7.5 1. Decentralized control. First we calculate the RGA of the process,

RGA(G(0)) = G(0) .∗G−T(0) =

(

1.2308 −0.2308

−0.2308 1.2308

)

.

We see that we should choose y1 Q u1 and y2 Q u2. A resonable tun-

ing, either by pole placement or hand tuning, gives PI controllers with

parameters close to

F(s) =

(

2(1+ 1
0.5s
) 0

0 2(1+ 1
0.5s
)

)

.

See figure 7.1 for step responses.

2. Decoupled control. The inverse of the static gain matrix is given by

G−1(0) =

(

4 3

1 4

)−1

Thus, for decoupling, we use W1 = G−1(0) and W2 = I. Hand-tuning of

the PI controllers gives

F(s) =

(

40(1+ 1
0.5s
) 0

0 20(1+ 1
0.8s
)

)

.

See figure 7.2 for step responses.
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Figure 7.2 Decoupled control

Matlab code:

s = tf(’s’);

G = [4/(s+1) 3/(3*s+1); 1/(3*s+1) 2/(s+0.5)];

% Decentralized control

RGA = dcgain(G).*(inv(dcgain(G))).’

F = [2*(1+1/(0.5*s)) 0;0 2*(1+1/(0.5*s))];

figure(1)

step(feedback(G*F, eye(2)),5)

title(’Decentralized control’);grid

% Decoupled design

Go = dcgain(G)

F = [40*(1+1/(0.5*s)) 0;0 20*(1+1/(0.8*s))];

figure(2);

step(feedback(G*inv(Go)*F,eye(2)),5);

title(’Decoupled design’);grid
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