Course Outline

L1-L5 Specifications, models and loop-shaping by hand

L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach

L12-L14 Controller optimization: Numerical approach

12. Youla parameterization, Internal Model Control13. Synthesis by convex optimization

14. Controller simplification

FRTN10 Multivariable Control, Lecture 12

Anton Cervin

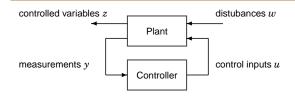
Automatic Control LTH, Lund University

Lecture 12

- ► The Youla Parameterization
- ► Internal Model Control
- ▶ Dead Time Compensation

Section 8.4 in Glad/Ljung.

The Youla parameterization (Q parameterization)



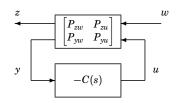
Idea for lectures 12-14:

The choice of controller corresponds to designing a transfer matrix Q(s), to get desirable properties of the following map from w to z:

$$P_{zw}(s) - P_{zu}(s)Q(s)P_{yw}(s)$$

Once Q(s) is determined, the corresponding controller can be found.

The Youla Parameterization



The closed loop transfer matrix from \boldsymbol{w} to \boldsymbol{z} is

$$G_{zw}(s) = P_{zw}(s) - P_{zu}(s)Q(s)P_{yw}(s)$$

where

$$Q(s) = C(s) [I + P_{yu}(s)C(s)]^{-1}$$

$$C(s) = Q(s) + Q(s)P_{yu}(s)C(s)$$

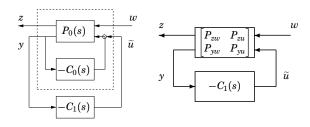
$$C(s) = \left[I - Q(s)P_{yu}(s)\right]^{-1}Q(s)$$

Closed loop maps for stable plants

Suppose the original plant P is stable. Then

- lacksquare Stability of Q(s) implies stability of $P_{zw}(s) P_{zu}(s)Q(s)P_{yw}(s)$
- If $Q = C \big[I + P_{yu} C \big]^{-1}$ is unstable, then the closed loop is unstable.

Closed loop maps for unstable plants



If $P_0(s)$ is unstable, let $C_0(s)$ be some stabilizing controller. Then the previous argument can be applied with P_{zw} , P_{zu} , P_{yw} , and P_{yu} representing the stabilized closed-loop system.

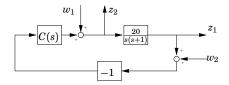
Next lecture: Synthesis by convex optimization

A general control synthesis problem can be stated as a convex optimization problem in the variable Q(s). The problem could have a quadratic objective, with linear/quadratic constraints, e.g.:

$$\begin{array}{ll} \text{Minimize} & \int_{-\infty}^{\infty} |P_{zw}(i\omega) + P_{zu}(i\omega) \overbrace{\sum_{k} Q_k \phi_k(i\omega)} P_{yw}(i\omega)|^2 d\omega \end{array} \right\} \text{ quadratic objective} \\ \text{subject to} & \text{step response } w_i \rightarrow z_j \text{ is smaller than } f_{ijk} \text{ at time } t_k \\ \text{step response } w_i \rightarrow z_j \text{ is bigger than } g_{ijk} \text{ at time } t_k \end{array} \right\} \text{ linear constraints} \\ \text{Bode magnitude } w_i \rightarrow z_j \text{ is smaller than } h_{ijk} \text{ at } \omega_k \end{array} \right\} \text{ quadratic constraints}$$

Here $Q(s)=\sum_k Q_k\phi_k(s)$, where ϕ_1,\ldots,ϕ_m are some fixed "basis functions", and Q_0,\ldots,Q_m are optimization variables. Once Q(s) has been determined, the controller is obtained as $C(s)=\left[I-Q(s)P_{yu}(s)\right]^{-1}Q(s)$

Example — DC-motor



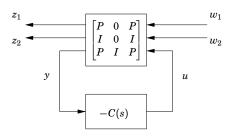
The transfer matrix from (w_1, w_2) to (z_1, z_2) is

$$G_{zw}(s) = egin{bmatrix} rac{P}{1+PC} & rac{-PC}{1+PC} \ rac{1}{1+PC} & rac{-C}{1+PC} \ \end{pmatrix}$$

where $P(s)=rac{20}{s(s+1)}.$ How to obtain stable $P_{zw},\,P_{zu},\,P_{yw},\,P_{yu}$ to get

$$G_{zw}(s) = P_{zw}(s) - P_{zu}(s)Q(s)P_{yw}(s) ?$$

Stabilizing nominal feedback for DC-motor

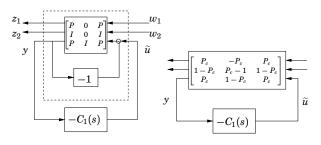


The plant $P(s) = \frac{20}{s(s+1)}$ is not stable, so write

$$C(s) = C_0(s) + C_1(s)$$

where $C_0(s) \equiv 1$ is a stabilizing controller.

Redraw diagram for DC motor example



$$G_{zw}(s) = \begin{bmatrix} P_c & -P_c \\ 1-P_c & P_c-1 \end{bmatrix} + \begin{bmatrix} P_c \\ 1-P_c \end{bmatrix} Q \begin{bmatrix} P_c & 1-P_c \end{bmatrix}$$

where $P_c(s) = (1 + P(s))^{-1}P(s) = \frac{20}{s^2 + s + 20}$ is stable.

DC motor example - final controller

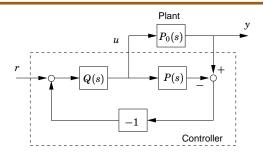
Once Q(s) has been designed, the controller is obtained as

$$C_1 = (I - QP_c)^{-1}Q$$
$$C = C_0 + C_1$$

Outline

- Youla Parameterization
- Internal Model Control
- o Dead Time Compensation

Internal Model Control

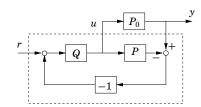


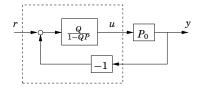
Feedback is used only as the real process deviates from P(s).

The transfer function Q(s) defines how the desired input depends on the reference signal.

When $P = P_0$, the transfer function from r to y is P(s)Q(s).

Two equivalent diagrams





Internal Model Control — Strictly proper plants

When $P=P_0$, the transfer function from r to y is P(s)Q(s).

For perfect reference following, one would like to put $Q(s)=P(s)^{-1}.$ For several reasons this is not possible:

If P(s) is strictly proper, the inverse would have more zeros than poles. Instead, one could choose

$$Q(s) = \frac{1}{(\lambda s + 1)^n} P(s)^{-1}$$

where n is large enough to make Q proper. The parameter λ determines the speed of the closed-loop system.

Internal Model Control — Zeros and delays

Other reasons why $Q(s) = P(s)^{-1}$ is often not possible:

- If P(s) has unstable zeros, the inverse would be unstable. Options:
 - ightharpoonup Remove every unstable factor $(-\beta s+1)$ from the plant numerator before inverting
 - ▶ Replace every unstable factor $(-\beta s + 1)$ with $(\beta s + 1)$. With this option, only the phase is modified, not the amplitude function.
- If P(s) includes a time delay, its inverse would have to predict the future. Instead, the time delay is removed before inverting.

Design Example 1 — First order plant model

$$P(s) = \frac{1}{\tau s + 1}$$

$$Q(s) = \frac{1}{\lambda s + 1} P(s)^{-1} = \frac{\tau s + 1}{\lambda s + 1}$$

$$C(s) = \frac{Q(s)}{1 - Q(s)P(s)} = \frac{\frac{\tau s + 1}{\lambda s + 1}}{1 - \frac{1}{\lambda s + 1}} = \underbrace{\frac{\tau}{\lambda} \left(1 + \frac{1}{s\tau}\right)}_{\text{PI controller}}$$

(This way of tuning a PI controller is known as lambda tuning)

Design Example 2 — Non-minimum phase plant

$$\begin{split} P(s) &= \frac{-\beta s + 1}{\tau s + 1} \\ Q(s) &= \frac{(-\beta s + 1)}{(\beta s + 1)} P(s)^{-1} = \frac{\tau s + 1}{\beta s + 1} \\ C(s) &= \frac{Q(s)}{1 - Q(s)P(s)} = \frac{\frac{\tau s + 1}{\beta s + 1}}{1 - \frac{(-\beta s + 1)}{(\beta s + 1)}} = \underbrace{\frac{\tau}{2\beta} \left(1 + \frac{1}{s\tau}\right)}_{\text{Pl controller}} \end{split}$$

Outline

- o Youla Parameterization
- Internal Model Control
- Dead Time Compensation

Dead Time Compensation

Consider the plant model

$$P(s) = P_1(s)e^{-s\tau}$$

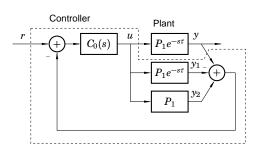
Let $C_0=Q/(1-QP_1)$ be the controller we would have used without delays. Then $Q=C_0/(1+C_0P_1)$.

The rule of thumb tell us to use the same ${\cal Q}$ also for systems with delays. This gives

$$\begin{split} C(s) &= \frac{Q(s)}{1 - Q(s)P_1(s)e^{-s\tau}} = \frac{C_0/(1 + C_0P_1)}{1 - e^{-s\tau}P_1C_0/(1 + C_0P_1)} \\ C(s) &= \frac{C_0(s)}{1 + (1 - e^{-s\tau})C_0(s)P_1(s)} \end{split}$$

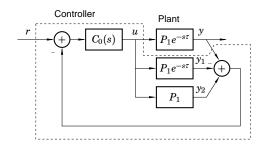
This modification of the $C_0(s)$ to account for time delays is known as a Smith predictor.

Smith Predictor



The Smith predictor uses an internal model of the process (with and without the delay). Ideally Y and Y_1 cancel each other and only feedback from Y_2 "without delay" is used.

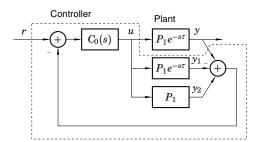
Smith Predictor



$$Y(s) = e^{-s\tau} \frac{C_0(s) P_1(s)}{1 + C_0(s) P_1(s)} R(s)$$

- ▶ Delay eliminated from denominator!
- ► Reference response greatly simplified!

Smith Predictor — A Success Story!

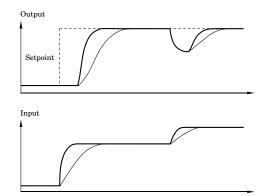


- Numerous modifications
- Many industrial applications

Otto J.M. Smith listed in the ISA "Leaders of the Pack" list (2003) as one of the 50 most influential innovators since 1774.

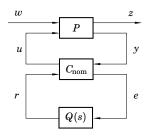
Example: Dead Time Compensation

Smith predictor (thick) and standard PI controller (thin)



Youla parameterization revisited

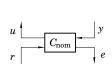
The Youla parameterization:

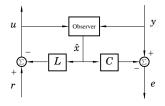


where C_{nom} stabilizes the [P,C]-system and Q(s) is any stable transfer function.

Nominal Controller: State Feedback from Observer

Linear system $\dot{x} = Ax + Bu + B_w w$, $y = Cx + D_w w$





with observer

$$\begin{split} \dot{\hat{x}} &= A\hat{x} + Bu + Ke \\ u &= r - L\hat{x} \\ e &= y - C\hat{x} \end{split}$$

Summary

- ightharpoonup Q(s) can be designed by hand for simple plants
 - ► Internal Model Control
 - Warning: Cancellation of slow poles gives poor disturbance rejection
- ${f P}(s)$ can be found via convex optimization, also for multivariable plants (see Lecture 13)

Course Outline

L1-L5 Specifications, models and loop-shaping by hand

L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach

L12-L14 Controller optimization: Numerical approach

12. Youla parameterization, Internal Model Control

13. Synthesis by convex optimization

14. Controller simplification