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Course Outline

L1-L5 Specifications, models and loop-shaping by hand

1. Introduction and system representations
2. Stability and robustness
3. Specifications and disturbance models
4. Control synthesis in frequency domain
5. Case study

L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach

L12-L14 Controller optimization: Numerical approach

Lecture 4: Control Synthesis in the Frequency Domain

◮ Review of concepts from lecture 3
◮ Calculation of spectral density and variance
◮ Spectral factorization

◮ Control synthesis in frequency domain:
◮ Frequency domain specifications
◮ Loop shaping

◮ Feedforward design

[Glad & Ljung] Ch. 6.4–6.6, 8.1–8.2

Example: Spectral density and variance

u y
G(s)

Assume u to be unit intensity white noise and G(s) = (s + 1)−2.
What is the spectral density and variance of y?

Φu(ω) = 1

Φy(ω) = G(iω)Φu(ω)G∗(iω) = G(iω)G(−iω) = 1
(1 + ω2)2

Ey2 = 1
2π

∫ ∞

−∞
Φy(ω)dω = 1

2π

∫ ∞

−∞

1
(1 + ω2)2 dω = 1

4

Example: Spectral density and variance

Alternative (state-space) solution to compute the variance:
G(s) ⇔ ss(A, B, C, D) with

A =



−1 −2
0 −1


 , B =




−1
−1


 C =


1/2 −1/2


 , D = 0

Lyapunov equation for state covariance Πx = ExxT :

AΠx + ΠxA + BBT = 0 ⇒ Π =



1/2 0
0 1/2




Variance of y:

Ey2 = E(Cx)(Cx)T = CΠxCT = 1/4

Example: Spectral Factorization

Given

Φy(ω) = 1
ω4 + 2ω2 + 1

find stable G(s) such that G(iω)G(−iω) = Φy(ω)

Solution:

1
ω4 + 2ω2 + 1 = 1

(ω2 + 1)2 = 1
(
(1 + iω)(1 − iω)

)2

G(iω) = 1
(1 + iω)2

G(s) = 1
(s + 1)2
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Review: Relations between signals
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Review: Design problem

Find a controller that

A: reduces the effect of load disturbances

B: does not inject too much measurement noise into the system

C: makes the closed loop insensitive to process variations

D: makes the output follow the setpoint

It is convenient to use a controller with two degrees of freedom , i.e.
separate signal transmission from y to u and from r to u. This gives a
nice separation of the design problem:

1. First design feedback compensator to deal with A, B, and C.

2. Then design feedforward compensator to deal with D.

Time domain specifications

◮ Specifications on step
response (w.r.t reference
and/or load disturbance)

◮ Rise-time Tr

◮ Overshoot M
◮ Settling time Ts

◮ Static error e0
◮ . . .
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Stochastic specifications

◮ Output variance

◮ Control signal variance

◮ . . .
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Frequency domain specifications

Open-loop specifications

◮ Ms and Mt circles in Nyquist
diagram

◮ Amplitude margin Am,
phase margin ϕm

◮ Cross-over frequency ωc
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Closed-loop specifications (r to y)

◮ resonance peak Mp

◮ bandwidth ωB

◮ . . .

|Gcl(iω)|

Mp

1/
√

2

1 ω
ωB

Frequency domain specifications

Closed-loop specifications, cont’d:
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Desired properties:

◮ Small influence of load disturbance d on z

◮ Small influence of model errors on z

◮ Limited amplification of noise n in control u

◮ Robust stability despite model errors

Frequency domain specifications

Ideally, we would like to design the controller so that

◮
PCF

1 + PC
= 1

◮
P

1 + PC︸ ︷︷ ︸
=P S

= 1
1 + PC︸ ︷︷ ︸

=S

= C

1 + PC︸ ︷︷ ︸
=P −1T

= PC

1 + PC︸ ︷︷ ︸
=T

= 0

S + T = 1 makes this is impossible to achieve.

Typical compromise:

◮ Make S small at low frequencies (+ possibly other disturbance
dominated frequencies)

◮ Make T small at high frequencies

Expressing specifications on S and T

Find specifications WS and WT for closed-loops transfer functions s.t

|S(iω)| ≤ |W −1
S (iω)|

|T (iω)| ≤ |W −1
T (iω)|

(Magnitude corresponds to singular values for MIMO-systems)

Examples:

◮ |S(iω)| < 1.5 for ω < 5 Hz

◮ |S| < |W −1
S | = s/(s+10)

◮ |T | < |W −1
T | = 10/(s+10)

Expressing specifications on S and T

Find specifications WS and WS for closed-loops transfer functions s.t

|S(iω)| ≤ |W −1
S (iω)|

|T (iω)| ≤ |W −1
T (iω)|

(Magnitude corresponds to singular values for MIMO-systems)
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Limitations on specifications

The specifications cannot be chosen independently of each other:

◮ S + T = 1

Fundamental limitations [Lecture 7]:

◮ RHP zero at z ⇒ ω0S ≤ z/2
◮ Time delay T ⇒ ω0S ≤ 1/T

◮ RHP pole at p ⇒ ω0T ≥ 2p

Bode’s integral theorem:

◮ The "waterbed effect"

Bode’s relation:

◮ good phase margin requires
certain distance between ω0S

and ω0T

ω

ω

|W −1
S |

|W −1
T |

Ms

Mt

1

1
w0S

w0T

Loop shaping design

Idea: Look at the loop-gain L = PC for design and to translate
specifications on S & T into specifications on L

S = 1
1 + L

≈ 1/L if L is large

T = L

1 + L
≈ L if L is small

Classical loop shaping:

◮ design C so that L = PC satisfies constraints on S and T

◮ how are the specifications related?

◮ what to do with the regions around cross-over frequency ωc

(where |L| = 1)?

Sensitivity vs Loop Gain

S = 1
1 + L

|S(iω)| ≤ |W −1
S (iω)| ⇐⇒ |1 + L(iω)| > |WS(iω)|

For small frequencies, WS large =⇒ 1 + L large, and |L| ≈ |1 + L|.

|L(iω)| ≥ |WS(iω)| (approx.)

(typically valid for ω < ω0S)

Complementary Sensitivity vs Loop Gain

T = L

1 + L

|T (iω)| ≤ |W −1
T (iω)| ⇐⇒ |L(iω)|

|1 + L(iω)| ≤ |W −1
T (iω)|

For large frequencies, W −1
T small =⇒ |T | ≈ |L|

|L(iω)| ≤ |W −1
T (iω)| (approx.)

(typically valid for ω > ω0T )

Resulting constraints on loop gain L:

Remark: approximations inexact around cross-over frequency ωc. In
this region, focus is on stability margins Am, ϕm.

These requirements are to say that the loop transfer matrix

L = P (iω)C(iω)

should have large norm ‖P (iω)C(iω)‖ at low frequencies and small
norm at high frequencies.
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Specifying |S(iω)| ≤ Ms and |T (iω)| ≤ Mt gives bounds for the gain
and phase margins (but not the other way round!)

|S(iω)| ≤ Ms =⇒ Am >
Ms

Ms − 1 , ϕm > 2 arcsin 1
Ms

L(iω)
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Q: Why does not Am and ϕm give bounds on Ms and Mt?

Classical loop shaping

Map specifications on requirements on loop gain L.

◮ Low-frequency specifications from WS

◮ High-frequency specifications from W −1
T

◮ Around cross-over frequency, mapping is crude
◮ Position cross-over frequency (constrained by WS , WT )
◮ Adjust phase margin (e.g. from Ms, Mt specifications)
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Lead-lag compensation

Shape loop gain L = PC using a compensator C composed of

◮ Lag (phase retarding) elements

Clag = s + a

s + a/M
, M > 1

◮ Lead (phase advancing) elements

Clead = N
s + b

s + bN
, N > 1

◮ Gain
K

Typically

C = K
s + a

s + a/M
· N

s + b

s + bN

Properties of leads-lag elements

◮ Lag (phase retarding) elements
◮ Reduces static error
◮ Reduces stability margin

◮ Lead (phase advancing) elements
◮ Increased speed by increased ωc

◮ Increased phase
=⇒ May improve stability

◮ Gain
◮ Translates magnitude curve
◮ Does not change phase curve

See "Collection of Formulae" for lead-lag link diagrams

Iterative lead-lag design

◮ Step 1: Lag (phase retarding) element
◮ Add phase retarding element to get low-frequency asymptote right

◮ Step 2: Phase advancing element
◮ Use phase advancing element to obtain correct phase margin

◮ Step 3: Adjust gain
◮ Usually need to "lift up" or "push down" amplitude curve to obtain

the desired cross-over frequency.

Adjusting the gain in Step 3 leaves the phase unaffected, but may
ruin low-frequency asymptote (need to revise lag element) =⇒
An iterative method!

Example of other compensation link:

Notch filter
s2 + 0.01s + 1

s2 + 2s + 1
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log |P C| = log |P | + log |C|
arg{P C} = arg{P }+arg{C}
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Feedforward design
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The reference signal r specifies the desired value of y.

Ideally
P (s)C(s)

1 + P (s)C(s)F (s) ≈ 1

Equivalently

F (s) ≈ 1 + P (s)C(s)
P (s)C(s)

Exact equality is generally impossible because of pole excess in P .

The simplest and most common approximation is to use a constant
gain

F = 1 + P (0)C(0)
P (0)C(0)
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A more advanced option is

F (s) = 1 + P (s)C(s)
P (s)C(s)(sT + 1)d

for some suitable time constant T and d large enough to make F
proper and implementable.

Example

P (s) = 1
(s + 1)4 F (s) = 1 + P (s)C(s)

P (s)C(s)(sT + 1)d

The closed loop transfer function from r to u then becomes

C(s)
1 + P (s)C(s)F (s) = (s + 1)4

(sT + 1)4

which has low-fq gain 1, but gain 1/T 4 for ω −→ ∞.
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Notice that Mu and My can be viewed as generators of the desired
output ym and the inputs um which corresponds to ym.

Design of Feedforward revisited

The transfer function from r to e = ym − y is (My − PMu)S

Ideally, Mu should satisfy Mu = My/P . This condition does not
depend on C!

Since Mu = My/P should be stable, causal and not include
derivatives we find that

◮ Unstable process zeros must be zeros of My

◮ Time delays of the process must be time delays of My

◮ The pole excess of My must not be smaller than the pole excess
of P

Take process limitations into account!

Example of Feedforward Design revisited

If

P (s) = 1
(s + 1)4 My(s) = 1

(sT + 1)4

then

Mu(s) = My(s)
P (s) = (s + 1)4

(sT + 1)4
Mu(∞)
Mu(0) = 1

T 4

Fast response (T small) requires high gain of Mu.

Bounds on the control signal limit how fast response we can obtain.

Summary

Frequency domain design:

◮ Good mapping between S, T and L = PC at low and high
frequencies (mapping around cross-over frequency less clear)

◮ Simple relation between C and L =⇒ easy to shape L!

◮ Lead-lag control: iterative adjustment procedure
◮ What if closed-loop specifications are not satisfied?

◮ we made a poor design (did not iterate enough), or
◮ the specifications are not feasible (fundamental limitations in

Lecture 7)

◮ Later in the course::
◮ Use optimization to find stabilizing controller that satisfies

constraints, if such a controller exists

Feedforward design

Course Outline
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