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Course Outline

L1-L5 Specifications, models and loop-shaping by hand

1. Introduction and system representations
2. Stability and robustness
3. Specifications and disturbance models
4. Control synthesis in frequency domain
5. Case study

L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach

L12-L14 Controller optimization: Numerical approach

Lecture 3: Specifications and Disturbance Models

Continuing from lecture 2...

◮ Look at all transfer functions the closed-loop system!
(Gang of Four / Gang of six)

◮ Scalings

New today

◮ Stochastic disturbances

◮ From transfer function to output spectrum

◮ From output spectrum to transfer function

[Glad & Ljung] Ch. 5.1–5.6, 6.1–6.3

A Basic Control System
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Ingredients:

◮ Controller: feedback C, feedforward F

◮ Load disturbance d: Drives the system from desired state

◮ Measurement noise n: Corrupts information about z

◮ Process variable z should follow reference r

Design problem

Find a controller that

A: reduces the effect of load disturbances

B: does not inject too much measurement noise into the system

C: makes the closed loop insensitive to process variations

D: makes the output follow the setpoint

It is convenient to use a controller with two degrees of freedom , i.e.
separate signal transmission from y to u and from r to u. This gives a
nice separation of the design problem:

1. First design feedback compensator to deal with A, B, and C.

2. Then design feedforward compensator to deal with D.

Relations between signals
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Z = P

1 + PC
D − PC

1 + PC
N + PCF

1 + PC
R

Y = P

1 + PC
D + 1

1 + PC
N + PCF

1 + PC
R

U = − PC

1 + PC
D − C

1 + PC
N + CF

1 + PC
R

The Gang of SIx

Six transfer functions are required to show the properties of a basic
feedback loop. Four characterize the response to load disturbances
and measurement noise.
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Two more are required to describe the response to set point changes.

PCF

1 + PC

CF

1 + PC

Some Observations

◮ A system based on error feedback is characterized by four
transfer functions (The Gang of Four)

◮ The system with a controller having two degrees of freedom is
characterized by six transfer function (The Gang of Six)

◮ To fully understand a system it is necessary to look at all transfer
functions

◮ It may be strongly misleading to show properties of only one or a
few transfer functions, for example the response of the output to
command signals. This is a common error in the literature.

◮ The properties of the different transfer functions can be illustrated
by their transient or frequency responses.
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Amplitude Curves of Frequency Responses

Example: PI control with K = 0.775, Ti = 2.05 of P (s) = (s + 1)−4

with Gr→y(s) = (0.5s + 1)−4
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Step Responses

Example: PI control with K = 0.775, Ti = 2.05 of P (s) = (s + 1)−4

with Gr→y(s) = (0.5s + 1)−4

0 10 20 30

0

0.5

1

1.5

0 10 20 30

0

0.5

1

1.5

0 10 20 30

0

0.5

1

1.5

0 10 20 30

0

0.5

1

1.5

0 10 20 30

0

0.5

1

1.5

0 10 20 30

0

0.5

1

1.5

PCF/(1 + PC) PC/(1 + PC)

C/(1 + PC)

P/(1 + PC)

CF/(1 + PC) 1/(1 + PC)

Step Reponses—An Alternative

Show the responses in the output and the control signal to a step
change in the reference signal for system with pure error feedback and
with feedforward. Keep the reference signal constant and make a unit
step in the process input.

(Upper:) Output response (Lower:) Control signal.
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step responce load disturbance

Many Versions of 2DOF
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For linear systems all 2DOF configurations have the same properties.
For the systems above we have

CF = Mu + CMy

A Warning!

Remember to always look at all responses when you are dealing with
control systems. The step response below looks fine, but . . .
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Gang of Four
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What is going on?

The System

Process P (s) = 1
s − 1

Controller C(s) = s − 1
s

Response of y to reference r

Y (s)
R(s) = PC

1 + PC
= 1

s + 1

Response of y to step in disturbance d

Y (s)
D(s) = P

1 + PC
= s

s2 − 1 = s

(s + 1)(s − 1)

Scaling

The norms used to measure signal size can be very misleading if we
are using states with very different magnitudes

Common to scale/normalize variables for state representations

xi = xp
i /di

where

◮ xp
i corresponds to physical units

◮ di corresponds to (expected) max size of variable (absolute
value).

Alternative: Use a weighed signal norm, e.g. ‖u‖Q =
√∫ ∞

0 uT Qu dt,
where Q is a positive semidefinite matrix
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Lecture 3: Specifications and Disturbance Models

Continuing from lecture 2...

◮ Look at all transfer functions the closed-loop system!
(Gang of Four / Gang of six)

◮ Scalings

New today

◮ Stochastic disturbances

◮ From transfer function to output spectrum

◮ From output spectrum to transfer function

Disturbances cont.
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Load disturbances

◮ disturbances which really affect the system
◮ wm measurable — use e.g., in feedforward compensation
◮ ws non-measurable — controller need to suppress these

Measurement disturbances n

◮ Controller should not be "fooled" by measurement disturbances

Common case: z = S(u, wm, ws), y = z + n where

z is the control objective, y is the measured output

Motivation

Example: Paper thickness — want to keep down variation in output!
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Paper thickness

All paper production below the test limit is wasted.
Good control allows for lower setpoint with the same waste. The
average thickness is lower, which saves significant costs.

Motivation cont’d - LQG control

For a system with process noise w and measurement noise v, where
v is white noise with intensity R1 and w is white noise with intensity
R2, find a feedback law from y to u that solves the following
optimization problem:

Minimize E
(
xT Q1x + 2xT Q12u + uT Q2u

)

subject to ẋ = Ax + Bu + w

y = Cx + Du + v

Stochastic processes

A stochastic process (random process) is a family of stochastic
variables {x(t), t ∈ T}
A function of two variables x(t, ω)

Fixed ω = ω0 gives a time function x(·, ω0) (realization)
Fixed t = t1 gives a random variable x(t1, ·)

A realization

t1 t

ξ

    F ξ , t 1( )
1

    x ⋅,ω1( )

x ⋅,ω2( )

    x ⋅,ω3( )

    x ⋅,ω4( )

Zero mean stationary stochastic processes

The distribution is independent of t

Mean-value function
Ex(t) ≡ 0

Covariance function

rxx(τ) = Ex(t + τ)x(t)T

Cross-covariance function

rxy(τ) = Ex(t + τ)y(t)T

A zero mean Gaussian process x is completely determined by its
covariance function.

Spectral density

Define the spectral density as the Fourier transform of the covariance
function

Φxy(ω) :=
∫ ∞

−∞
rxy(t)e−itωdt

Then, by inverse Fourier transform

rxy(t) =
∫ ∞

−∞
eitωΦxy(ω) dω

In particular

Ex(t)xT (t) = rxx(0) =
∫ ∞

−∞
Φxx(ω) dω

White noise with intensity R means a process e such that

Φe(ω) = R for all frequencies ω

Covariance, spectral density, and realization
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Error correction: The spectra should be divided by 2π
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Two Problems

1. Determine covariance function and spectral density of y when
white noise u is filtered through a linear system G(s) or

ẋ = Ax + Bu

y = Cx

2. Conversely, find G(s) or state-space matrices A, B and C to
give y a desired spectral density.

Spectral density and transfer functions

G(s)u y

Assume that u has spectral density Φu(ω) and y is obtained by
filtering u with the transfer function G(iω).

Then y gets the spectral density

Φy(ω) = G(iω)Φu(ω)G(iω)∗

and the cross-spectral density becomes

Φyu(ω) = G(iω)Φu(ω)

.

Linear system with white noise input

Consider the linear system

ẋ = Ax + Bv, Φv(ω) = R

The transfer function from v to x is

G(s) = (sI − A)−1B

and the spectrum for x will be

Φx(ω) = (iωI − A)−1BR B∗(−iωI − A)−T

︸ ︷︷ ︸
G(iω)∗

Covariance matrix for state x:

Πx = Rx = 1
2π

∫ ∞

−∞
Φx(ω)dω

Calculating the state covariance matrix

Theorem [G&L 5.3]

If all eigenvalues of A are strictly in the left half plane then there exists
a unique matrix Πx = ΠT

x > 0 which is the solution to the Lyuapunov
equation

AΠx + ΠxAT + BRBT = 0

Example: Consider the system

ẋ = Ax + Bv =
[
−1 2
−1 0

] [
x1
x2

]
+

[
1
0

]
v

where v is white noise with intensity 1.

What is the covariance of x?

First check the eigenvalues of A : λ = −1
2 ± i

√
7

2 ∈ LHP . OK!

Solve the Lyapunov equation AΠx + ΠxAT + BRBT = 02,2.

Example cont’d

AΠx + ΠxAT + BRBT = 02×2

Find Πx:
[
−1 2
−1 0

] [
Π11 Π12
Π12 Π22

]
+

[
Π11 Π12
Π12 Π22

] [
−1 −1
2 0

]
+

[
1
0

] [
1 0

]
=

=
[
2(−Π11 + 2Π12) + 1 −Π12 + 2Π22 − Π11
−Π12 + 2Π22 − Π11 −2Π12

]
=

[
0 0
0 0

]

Solving for Π11, Π12 and Π22 gives

=⇒ Πx =
[
Π11 Π12
Π12 Π22

]
=

[
1/2 0
0 1/4

]
> 0

Matlab: lyap([-1 2; -1 0],[1 ; 0]*[1 0])

Spectral Factorization — Example

✲ G(s) ✲
v y

Find a filter G(s) such that a process y generated by filtering unit
intensity white noise through G will give

Φy(ω) = ω2 + 4
ω4 + 10ω2 + 9 ,

Solution. We have

Φy(ω) = ω2 + 4
(ω2 + 1)(ω2 + 9) =

∣∣∣∣
iω + 2

(iω + 1)(iω + 3)

∣∣∣∣
2

so G(s) = s+2
(s+1)(s+3) works. So does G(s) = s−2

(s+1)(s+3) .

Summary of today’s most important concepts

◮ Gang of four / gang of six

◮ Scalings

◮ Stochastic disturbances, described by covariance functions or
spectral densities

◮ White noise

◮ Translation from generating transfer function to output spectrum

◮ Translation from output spectrum to generating transfer function
(spectral factorization)
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