FRTN10 Multivariable Control, Lecture 3 Anton Cervin Automatic Control LTH, Lund University L6-L8 Limitations on achievable performance L9-L11 Controller optimization: Numerical approach L12-L14 Controller optimization: Numerical approach

Lecture 3: Specifications and Disturbance Models

Continuing from lecture 2...

- Look at all transfer functions the closed-loop system! (Gang of Four / Gang of six)
- Scalings
- New today
 - Stochastic disturbances
 - From transfer function to output spectrum
 - From output spectrum to transfer function

[Glad & Ljung] Ch. 5.1-5.6, 6.1-6.3

Design problem

Find a controller that

- A: reduces the effect of load disturbances
- B: does not inject too much measurement noise into the system
- C: makes the closed loop insensitive to process variations
- D: makes the output follow the setpoint

It is convenient to use a controller with **two degrees of freedom**, i.e. separate signal transmission from y to u and from r to u. This gives a nice separation of the design problem:

- 1. First design feedback compensator to deal with A, B, and C.
- 2. Then design feedforward compensator to deal with D.

The Gang of SIx

Six transfer functions are required to show the properties of a basic feedback loop. Four characterize the response to load disturbances and measurement noise.

$$\begin{array}{c} \frac{PC}{1+PC} & \frac{P}{1+PC} \\ \frac{C}{1+PC} & \frac{1}{1+PC} \end{array}$$

Two more are required to describe the response to set point changes.

$$\frac{PCF}{1+PC} \qquad \frac{CF}{1+PC}$$

A Basic Control System

Ingredients:

- \blacktriangleright Controller: feedback C, feedforward F
- ► Load disturbance d: Drives the system from desired state
- Measurement noise n: Corrupts information about z
- Process variable z should follow reference r

Relations between signals

Some Observations

- A system based on error feedback is characterized by four transfer functions (The Gang of Four)
- The system with a controller having two degrees of freedom is characterized by six transfer function (The Gang of Six)
- To fully understand a system it is necessary to look at all transfer functions
- It may be strongly misleading to show properties of only one or a few transfer functions, for example the response of the output to command signals. This is a common error in the literature.
- The properties of the different transfer functions can be illustrated by their transient or frequency responses.

Amplitude Curves of Frequency Responses

Example: PI control with K=0.775, $T_i=2.05$ of $P(s)=(s+1)^{-4}$ with $G_{r\to y}(s)=(0.5s+1)^{-4}$

Step Reponses—An Alternative

Show the responses in the output and the control signal to a step change in the reference signal for system with pure error feedback and with feedforward. Keep the reference signal constant and make a unit step in the process input.

A Warning!

Remember to always look at all responses when you are dealing with control systems. The step response below looks fine, but ...

The System

Process $P(s) = \frac{1}{s-1}$ Controller $C(s) = \frac{s-1}{s-1}$

Response of y to reference r

$$\frac{Y(s)}{R(s)}=\frac{PC}{1+PC}=\frac{1}{s+1}$$

Response of y to step in disturbance d

$$\frac{Y(s)}{D(s)} = \frac{P}{1+PC} = \frac{s}{s^2 - 1} = \frac{s}{(s+1)(s-1)}$$

Step Responses

Example: PI control with K=0.775, $T_i=2.05$ of $P(s)=(s+1)^{-4}$ with $G_{r\to y}(s)=(0.5s+1)^{-4}$

Many Versions of 2DOF

For linear systems all 2DOF configurations have the same properties. For the systems above we have

 $CF = M_u + CM_y$

Gang of Four

What is going on?

Scaling

The norms used to measure signal size can be very misleading if we are using states with very different magnitudes

Common to scale/normalize variables for state representations

$$x_i = x_i^p / d_i$$

where

- x_i^p corresponds to physical units
- d_i corresponds to (expected) max size of variable (absolute value).

Alternative: Use a weighed signal norm, e.g. $||u||_Q = \sqrt{\int_0^\infty u^T Q u \, dt}$, where Q is a positive semidefinite matrix

White noise with *intensity* R means a process e such that

$$\Phi_e(\omega) = R$$
 for all frequencies ω

tau Error correction: The spectra should be divided by 2π

0.1

0.01 10

Omega

Two Problems

Spectral density and transfer functions

u G(s)

y

1. Determine covariance function and spectral density of y when white noise u is filtered through a linear system ${\cal G}(s)$ or

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

2. Conversely, find G(s) or state-space matrices A, B and C to give y a desired spectral density.

Assume that u has spectral density $\Phi_u(\omega)$ and y is obtained by filtering u with the transfer function $G(i\omega).$

Then y gets the spectral density

$$\Phi_u(\omega) = G(i\omega)\Phi_u(\omega)G(i\omega)^*$$

and the cross-spectral density becomes

 $\Phi_{yu}(\omega) = G(i\omega)\Phi_u(\omega)$

Calculating the state covariance matrix

Theorem [G&L 5.3]

If all eigenvalues of A are strictly in the left half plane then there exists a unique matrix $\Pi_x=\Pi_x^T>0$ which is the solution to the Lyuapunov equation

$$A\Pi_x + \Pi_x A^I + BRB^I = 0$$

Example cont'd

$$A\Pi_x + \Pi_x A^T + BRB^T = \mathbf{0}_{2 \times 2}$$

Find Π_x :

$$\begin{bmatrix} -1 & 2 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} \Pi_{11} & \Pi_{12} \\ \Pi_{12} & \Pi_{22} \end{bmatrix} + \begin{bmatrix} \Pi_{11} & \Pi_{12} \\ \Pi_{12} & \Pi_{22} \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 2 & 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} =$$
$$= \begin{bmatrix} 2(-\Pi_{11} + 2\Pi_{12}) + 1 & -\Pi_{12} + 2\Pi_{22} - \Pi_{11} \\ -\Pi_{12} + 2\Pi_{22} - \Pi_{11} & -2\Pi_{12} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Solving for $\Pi_{11},\,\Pi_{12}$ and Π_{22} gives

$$\implies \Pi_x = \begin{bmatrix} \Pi_{11} & \Pi_{12} \\ \Pi_{12} & \Pi_{22} \end{bmatrix} = \begin{bmatrix} 1/2 & 0 \\ 0 & 1/4 \end{bmatrix} > 0$$

Matlab: lyap([-1 2; -1 0],[1 ; 0]*[1 0])

Summary of today's most important concepts

- Gang of four / gang of six
- Scalings
- Stochastic disturbances, described by covariance functions or spectral densities
- White noise
- Translation from generating transfer function to output spectrum
- Translation from output spectrum to generating transfer function (spectral factorization)

$$\Phi_y(\omega) = \frac{\omega^2 + 4}{(\omega^2 + 1)(\omega^2 + 9)} = \left|\frac{i\omega + 2}{(i\omega + 1)(i\omega + 3)}\right|^2$$

so $G(s)=\frac{s+2}{(s+1)(s+3)}$ works. So does $G(s)=\frac{s-2}{(s+1)(s+3)}$

Consider the linear system

 $\dot{x} = Ax + Bv, \qquad \Phi_v(\omega) = R$

The transfer function from v to x is

$$G(s) = (sI - A)^{-1}B$$

and the spectrum for x will be

$$\Phi_x(\omega) = (i\omega I - A)^{-1} BR \underbrace{B^*(-i\omega I - A)^{-T}}_{C(i\omega)^*}$$

Covariance matrix for state x:

$$\Pi_x = R_x = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Phi_x(\omega) d\omega$$

Example: Consider the system

$$\dot{x} = Ax + Bv = \begin{bmatrix} -1 & 2\\ -1 & 0 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} + \begin{bmatrix} 1\\ 0 \end{bmatrix} v$$

where \boldsymbol{v} is white noise with intensity 1.

intensity white noise through G will give

Solution. We have

What is the covariance of x?

First check the eigenvalues of A : $\lambda = -\frac{1}{2} \pm i \frac{\sqrt{7}}{2} \in LHP$. OK!

Solve the Lyapunov equation $A\Pi_x + \Pi_x A^T + BRB^T = 0_{2,2}$.

Spectral Factorization — Example

G(s)

Find a filter ${\cal G}(s)$ such that a process y generated by filtering unit

 $\Phi_y(\omega) = \frac{\omega^2 + 4}{\omega^4 + 10\omega^2 + 9},$

y