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Lecture 2: Stability and Robustness

◮ Stability

◮ Robustness and sensitivity

◮ Small gain theorem

Stability is crucial

◮ bicycle

◮ JAS 39 Gripen

◮ Mercedes A-class

◮ ABS brakes

Input–output stability

u y
S

A system is called input–output stable (or “L2-stable” or just “stable”)
if its L2-gain is finite:

‖S‖ = sup
u

‖S(u)‖2
‖u‖2

< ∞

Input–output stability of LTI systems

For an LTI system S with impulse response g(t) and transfer function
G(s), the following stability conditions are equivalent:

◮ ‖S‖ is bounded

◮ g(t) decays exponentially

◮
∫ ∞

0 |g(t)|dt is bounded

◮ All poles of G(s) have negative real part (G(s) is Hurwitz stable)

Internal stability

The autonomous LTI system

dx

dt
= Ax

is called exponentially stable if the following equivalent conditions
hold:

◮ There exist constants α, β > 0 such that

|x(t)| ≤ αe−βt|x(0)| for t ≥ 0

◮ All eigenvalues of A have negative real part

(Exponential stability is a stronger form of asymptotic stability. For LTI systems, they

are equivalent.)

Internal vs input–output stability

If ẋ = Ax is exponentially stable, then G(s) = C(sI − A)−1B + D
is input–output stable.

Warning: The opposite is not always true! There may be unstable
pole-zero cancellations (that also render the system uncontrollable
and/or unobservable), and these may not be seen in the transfer
function!
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Stability of feedback loops

Assume scalar open-loop system G0(s)

♥ G0(s)✲✲

−1

✲

✛

✻
Σ

The closed-loop system is input–output stable if and only if all
solutions to the equation

1 + G0(s) = 0

are in the left half plane (i.e., have negative real part).

The Nyquist criterion

If G0(s) is stable, then the closed-loop system [1 + G0(s)]−1 is stable
if and only if the Nyquist curve does not encircle −1.

More generally, the difference between the number of unstable poles
in [1 + G0(s)]−1 and the number of unstable poles in G0(s) is equal
to the number of times the point −1 is encircled by the Nyquist plot in
the clockwise direction.
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(Note: Matlab gives a Nyquist plot for both positive and negative frequencies!)

Sensitivity and robustness

◮ How sensitive is the closed-loop system to model errors?

◮ How do we measure the “distance to instability”?

◮ Is it possible to guarantee stability for all systems within some
distance from the ideal model?

Amplitude and phase margin

Amplitude margin Am:

arg G(iω0) = −180◦, |G(iω0)| = 1
Am

Phase margin φm:

|G(iωc)| = 1, arg G(iωc) = φm − 180◦
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Gain curve
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Mini-problem

❢ k(s+1)
s2+cs+1 e−sT

−1

✲ ✲ ✲ ✲

✛

✻

Nominally k = 1, c = 1 and T = 0. How much margin is there in each
of the parameters before the system becomes unstable?

0 0.5 1 1.5
−1.5

−1

−0.5

0

Re

Im

10
0

10
1

−180

−135

−90

−45

0
0

0.5

1

1.5
Gm = Inf,  Pm = 109.47 deg (at 1.4142 rad/sec)
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Frequency

How sensitive is T to changes in P ?

❤ C(s) P (s)

−1

✲ ✲ ✲ ✲

✛

✻

r y

Y (s) = P (s)C(s)
1 + P (s)C(s)︸ ︷︷ ︸

T (s)

R(s)

dT

dP
= d

dP

(
1 − 1

1 + PC

)
= C

(1 + PC)2 = T

P (1 + PC)

Define the sensitivity function , S:

S := d(log T )
d(log P ) = dT/T

dP/P
= 1

1 + PC

and the complementary sensitivity function T :

T := 1 − S = PC

1 + PC
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Note that the

◮ complementary sensitivity function T is the transfer function
Gr→y

◮ sensitivity function S is the transfer function Gm→y

S + T = 1

Note: there are four different transfer functions for this closed-loop system and all have to be
stable for the system to be stable!

It may be OK to use an unstable controller C
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Nyquist plot illustration

The sensitivity function measures the distance between the Nyquist
plot and the point −1:

R−1 = sup
ω

∣∣∣∣
1

1 + P (iω)C(iω)

∣∣∣∣ = Ms

−1

Re

Im

R

P (iω)C(iω)

Lecture 2

◮ Stability

◮ Robustness and sensitivity

◮ Small gain theorem

Robustness analysis

Example: How large perturbations ∆(iω) can be tolerated
without risking instability?

❢ ❢P (iω)

−C(iω)

∆(iω)

✻
✲ ❄

✛

✲

✲

✲

v w

The Small Gain Theorem

r1

r2

e1

e2

S1

S2

Assume that S1 and S2 are input-output stable. If ‖S1‖ · ‖S2‖ < 1,
then the gain from (r1, r2) to (e1, e2) in the closed loop system is
finite.

◮ Note 1: The theorem applies also to nonlinear, time-varying, and
multivariable systems

◮ Note 2: The stability condition is sufficient but not necessary, so
the results may be conservative

Proof

Define ‖y‖T =
√∫ T

0 |y(t)|2dt. Then ‖S(y)‖T ≤ ‖S‖ · ‖y‖T .

e1 = r1 + S2(r2 + S1(e1))

‖e1‖T ≤ ‖r1‖T + ‖S2‖
(
‖r2‖T + ‖S1‖ · ‖e1‖T

)

‖e1‖T ≤ ‖r1‖T + ‖S2‖ · ‖r2‖T

1 − ‖S1‖ · ‖S2‖

This shows bounded gain from (r1, r2) to e1.

The gain to e2 is bounded in the same way.

Application to robustness analysis

❢ ❢G(iω)

−C(iω)

∆(iω)

✻
✲ ❄

✛

✲

✲

✲

v w

The diagram can be redrawn as

✛

v w
✲ ∆ ✲

GC
1+GC

✲
✻
❡

Application to robustness analysis

✛

v w
✲ ∆ ✲

GC
1+GC

✲
✻
❡

The small gain theorem guarantees stability if

‖∆‖∞ ·
∥∥∥∥

GC

1 + GC

∥∥∥∥
∞

< 1

Gain of multivariable LTI systems

Recall from Lecture 1 that

||S|| = sup
ω

|G(iω)| = ||G||∞

for a stable LTI system S.

How to calculate |G(iω)| for a multivariable system?
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Vector norm and matrix gain

For a vector x ∈ Cn, we use the 2-norm

|x| =
√

x∗x =
√

|x1|2 + · · · + |xn|2

For a matrix M ∈ Cn×n, we use the L2-induced norm

‖M‖ := sup
x

|Mx|
|x| = sup

x

√
x∗M∗Mx

x∗x
=

√
λ̄(M∗M)

Here λ̄(M∗M) denotes the largest eigenvalue of M∗M . The ratio
|Mx|/|x| is maximized when x is a corresponding eigenvector.

Example: Different gains in different directions:
[
y1
y2

]
=

[
2 4
0 3

] [
u1
u2

]
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(red):eigenvectors ; (blue): V ; (green): U    A=U*S*VT 

y 2

y=Gu = [4.42      2.85]T,      |y|= 5.26

Example: matlab-demo

Singular Values

For a matrix M , its singular values σi are defined as

σi =
√

λi

where λi are the eigenvalues of M∗M .

Let σ̄(M) denote the largest singular value and σ
¯
(M) the smallest

singular value.

For a linear map y = Mu, it holds that

σ
¯
(M) ≤ |y]

|u| ≤ σ̄(M)

The singular values are typically computed using singular value decomposition (SVD):

M = UΣV ∗

SVD example

Matlab code for singular value decomposition of the matrix

A =
[

2 4
0 3

]

SVD:
A = U · S · V ∗

where both the matrices U and V are unitary (i.e. have or-
thonormal columns s.t. V ∗ · V = I) and S is the diagonal
matrix with (sorted decreasing) singular values σi.
Multiplying A with a input vector along the first column in
V gives

A · V(:,1) = USV ∗ · V(:,1) =

= US

[
1
0

]
= U(:,1) · σ1

That is, we get maximal gain σ1 in the output direction

U(:,1) if we use an input in direction V(:,1) (and minimal

gain σn = σ2 if we use the last column V(:,n) = V(:,2)).

>> A=[2 4 ; 0 3]
A =

2 4
0 3

>> [U,S,V]=svd(A)
U =

0.8416 -0.5401
0.5401 0.8416

S =
5.2631 0

0 1.1400
V =

0.3198 -0.9475
0.9475 0.3198

>> A*V(:,1)
ans =

4.4296
2.8424

>> U(:,1)*S(1,1)
ans =

4.4296
2.8424

Example: Gain of multivariable system

Consider the transfer function matrix

G(s) =




2
s + 1

4
2s + 1

s

s2 + 0.1s + 1
3

s + 1




>> s=tf(’s’)
>> G=[ 2/(s+1) 4/(2*s+1); s/(s^2+0.1*s+1) 3/(s+1)];
>> sigma(G) % plot sigma values of G wrt fq
>> grid on
>> norm(G,inf) % infinity norm = system gain

ans =
10.3577

Singular Values
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System: G
Frequency (rad/sec): 0.0106
Singular Value (abs): 5.26

System: G
Frequency (rad/sec): 0.0101
Singular Value (abs): 1.14

System: G
Frequency (rad/sec): 0.0106
Singular Value (abs): 1.14

Figure: The singular values of the tranfer function matrix (prev slide). Note
that G(0)=[2,4 ; 0 3] which corresponds to M in the SVD-example above.
‖G‖∞ = 10.3577.

Summary of today’s most important concepts

◮ Input–output stability: ‖S‖ < ∞
◮ Sensitivity function: S := dT/T

dP/P = 1
1+P C

◮ Complementary sensitivity function: T = 1 − S

◮ Small Gain Theorem: The feedback interconnection of S1 and S2
is stable if ‖S1‖ · ‖S2‖ < 1

◮ The gain of a multivariable system G(s) is given by
supω σ̄(G(iω)), where σ̄ is the largest singular value
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