

Idea for lecture 12-14:

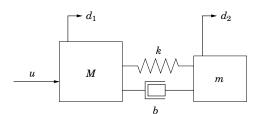
The choice of controller generally corresponds to finding Q(s), to get desirable properties of the map from w to z:

w

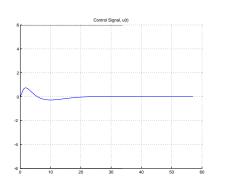
$$= P_{zw}(s) - P_{zu}(s)Q(s)P_{yw}(s)$$

Once Q(s) is determined, a corresponding controller is derived.

Example: Spring-mass System



Lecture 13: Synthesis by Convex Optimization



The step input stays within its amplitude bound $|u(t)| \leq 6$.

Lecture 13: Synthesis by Convex Optimization

- Example: Spring-mass system
- Introduction to convex optimization
- Controller optimization using Youla parametrization
- Examples revisited

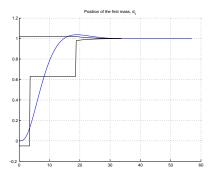
Most of this lecture is based on source material from Boyd, Vandenberghe and coauthors. See http://www.control.lth.se/Education/EngineeringProgram/FRTN10.html

Lecture 13: Synthesis by Convex Optimization

- Example: Spring-mass system
- Introduction to convex optimization
- Controller optimization using Youla parametrization
- Examples revisited

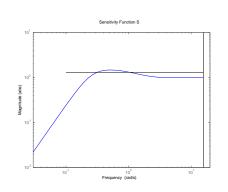
Most of this lecture is based on source material from Boyd, Vandenberghe and coauthors. See http://www.control.lth.se/Education/EngineeringProgram/FRTN10.html

Lecture 13: Synthesis by Convex Optimization



The step response is not within its upper and lower bounds.

Lecture 13: Synthesis by Convex Optimization



The sensitivity does not satisfy the magnitude bound $|S| \leq 1.3$

Least-squares

minimize $||Ax - b||_2^2$

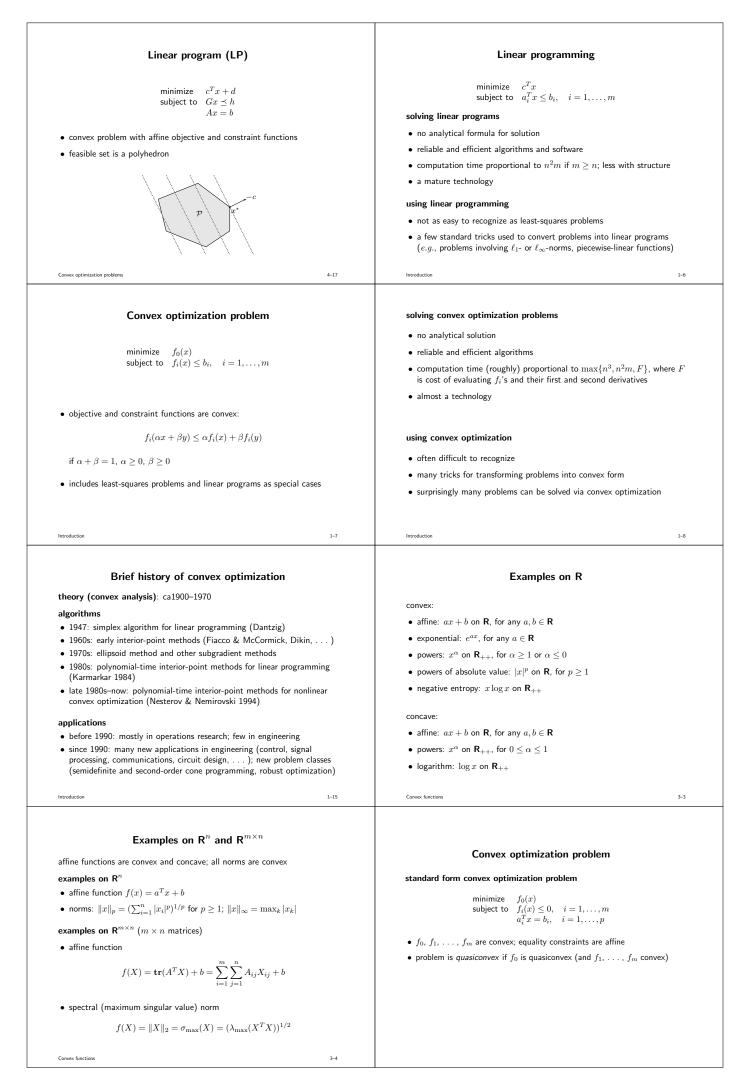
solving least-squares problems

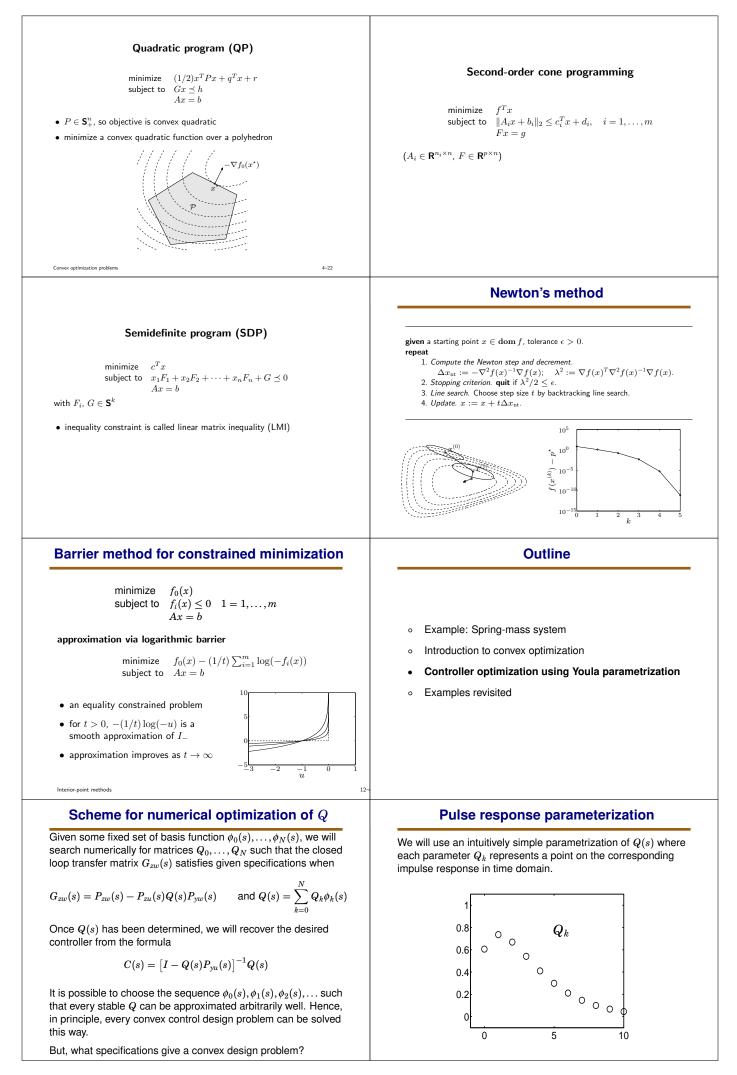
- analytical solution: $x^{\star} = (A^T A)^{-1} A^T b$
- reliable and efficient algorithms and software
- computation time proportional to n^2k $(A\in {\rm I\!\!R}^{k\times n});$ less if structured
- a mature technology

using least-squares

- least-squares problems are easy to recognize
- a few standard techniques increase flexibility (e.g., including weights, adding regularization terms)

Introduction



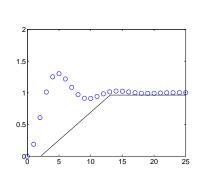


Mini-problem

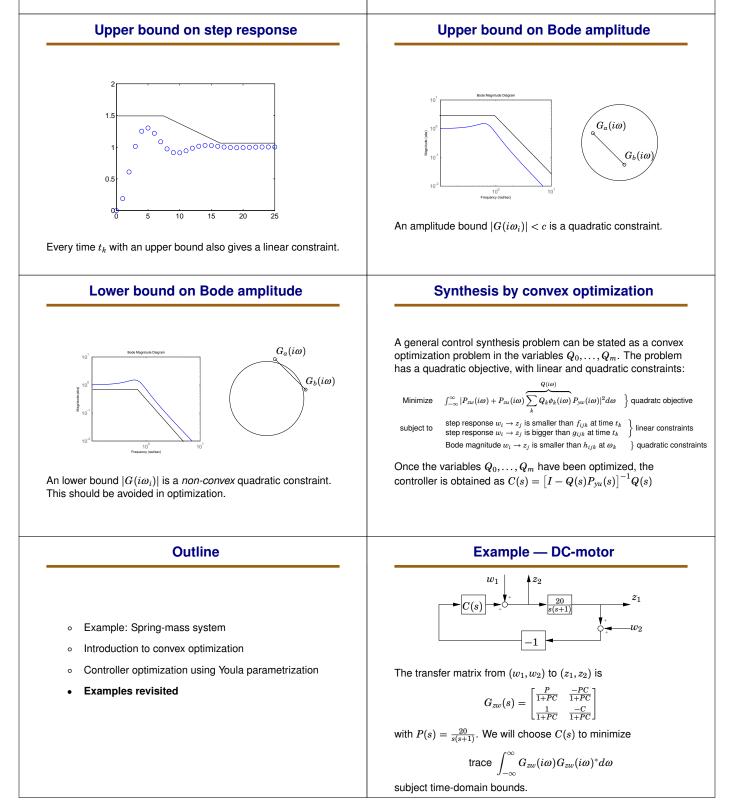
Lower bound on step response

Which specifications are convex constraints on Q_k ?

- 1. Stability of the closed loop system
- **2**. Lower bound on step response from w_i to z_j at time t_i
- 3. Upper bound on step response from w_i to z_j at time t_i
- 4. Lower bound on Bode amplitude from w_i to z_j at frequency ω_i
- 5. Upper bound on Bode amplitude from w_i to z_j at frequency ω_i
- 6. Interval bound on Bode phase from w_i to z_j at frequency ω_i



The step response depends linearly on Q_k , so every time t_k with a lower bound gives a linear constraint.



DC-servo with time domain bounds

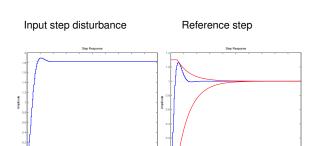
Input step disturbance Reference step

What if we remove the upper bound on the response to input disturbances ?

Summary

- > There are efficient algorithms for convex optimization, e.g.
 - Linear programming (LP)
 - Quadratic programming (QP)
 - Second order cone programming (SOCP)
 Semi-definite programming (SDP)
- ► The Youla parametrization allows us to use these algorithms for control synthesis
- Resulting controllers have high order. Order reduction will be studied in the next lecture.

DC-servo with time domain bounds



The integral action in the controller is lost, just as in lecture 11!