
Course outline

L1-L5 Purpose, models and loop-shaping by hand
L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach
L12-L14 Controller optimization: Numerical approach

Lecture 9: Linear Quadratic Control

◮ Dynamic Programming

◮ Riccati equation

◮ Optimal State Feedback

◮ Stability and Robustness

The sections 9.1-9.4 + 5.7 in the book treat essentially the
same material as we cover in lecture 9-11. However, the main
derivation of the LQG controller in appendix 9A is different.

A General Optimization Setup

Plant

Controller

✛ ✛

✛

✲
control inputs u

controlled variables z

measurements y

distubances w

The objective is to find a controller that optimizes the transfer
matrix Gzw(s) from disturbances w to controlled outputs z.

Lecture 9-11: Problems with analytic solutions
Lectures 12-14: Problems with numeric solutions

Thickness control in paper machine
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Test limit

Paper thickness

All paper production below the test limit is wasted.
Good control allows for lower setpoint with the same waste.
The average thickness is lower, which saves significant costs.

Today’s problem: State Feedback

Plant

Controller

✛ ✛

✛

✲
u

z = (x, u) x0

state measurement x

Minimize
∫ ∞

0

(
x(t)T Q1x(t) + 2x(t)T Q12u(t) + u(t)T Q2u(t)

)
dt

subject to ẋ(t) = Ax(t) + Bu(t), x(0) = x0

Mini-problem

Determine u0 and u1 as functions of x0 if the objective is to
minimize

x2
1 + x2

2 + u2
0 + u2

1

when

x1 = x0 + u0

x2 = x1 + u1

Hint: Go backwards in time.

Quadratic Optimal Cost

The optimal cost on the time interval [T1,∞] is quadratic:

xT Sx = min
u

∫ ∞

T1


x

u




T 
 Q1 Q12

QT
12 Q2





x

u


 dt

when

{
ẋ = Ax+ Bu
x(T1) = x

Dynamic programming, Richard E. Bellman 1957

T1 T1 + ǫ T

An optimal trajectory on the time
interval [T1, T ] must be optimal
also on each of the subintervals
[T1, T1 + ǫ] and [T1 + ǫ, T ].
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Dynamic programming in linear quadratic control

x(T1) = x, x(T1 + ǫ) = x + (Ax + Bu)ǫ

xT Sx = min
u

∫ ∞

T1


x

u




T 
 Q1 Q12

QT
12 Q2





x

u


 dt

= min
u

{
x

u




T 
 Q1 Q12

QT
12 Q2





x

u


 ǫ+

∫ ∞

T1+ǫ


x

u




T 
 Q1 Q12

QT
12 Q2





x

u


 dt

}

= min
u

{
x

u




T 
 Q1 Q12

QT
12 Q2





x

u


 ǫ+

[
x + (Ax + Bu)ǫ

]T
S
[
x + (Ax + Bu)ǫ

]}

by definition of S. Neglecting ǫ2 gives Bellman’s equation:

0 = min
u

[(
xT Q1x + 2xT Q12u+ uT Q2u

)
+ 2xT S

(
Ax + Bu

)]

Lecture 9: Linear Quadratic Control

◮ Dynamic Programming

◮ Riccati equation

◮ Optimal State Feedback

◮ Stability and Robustness

Completion of squares

The scalar case: Suppose c > 0.

ax2 + 2bxu+ cu2 = x
(

a− b2

c

)
x +

(
u+ b

c
x
)

c
(

u+ b
c

x
)

is minimized by u = − b
c x. The minimum is

(
a− b2/c

)
x2.

The matrix case: Suppose Qu > 0. Then

xT Qxx + 2xT Qxuu+ uT Quu

= (u+ Q−1
u QT

xux)T Qu(u+ Q−1
u QT

xux) + xT(Qx − QxuQ−1
u QT

xu)x

is minimized by u = −Q−1
u QT

xux. The minimum is
xT(Qx − QxuQ−1

u QT
xu)x.

The Riccati Equation

Completion of squares in Bellman’s equation gives

0 = min
u

((
xT Q1x + 2xT Q12u+ uT Q2u

)
+ 2xT S

(
Ax + Bu

))

= min
u

(
xT [Q1 + AT S+ SA]x + 2xT [Q12 + SB]u+ uT Q2u

)

= xT
(

Q1 + AT S+ SA− (SB + Q12)Q−1
2 (SB + Q12)T

)
x

with minimum attained for u = −Q−1
2 (SB + Q12)T x.

The equation

0 = Q1 + AT S+ SA− (SB + Q12)Q−1
2 (SB + Q12)T

is called the algebraic Riccati equation

Jocopo Francesco Riccati, 1676–1754 Lecture 9: Linear Quadratic Control

◮ Dynamic Programming

◮ Riccati equation

◮ Optimal State Feedback

◮ Stability and Robustness

Linear Quadratic Optimal Control

Problem:

Minimize
∫ ∞

0

(
x(t)T Q1x(t) + 2x(t)T Q12u(t) + u(t)T Q2u(t)

)
dt

subject to ẋ = Ax(t) + Bu(t), x(0) = x0

Solution: Assume (A, B) controllable. Then there is a unique
S > 0 solving the Riccati equation

0 = Q1 + AT S+ SA− (SB + Q12)Q−1
2 (SB + Q12)T

The optimal control law is u = −Lx with L = Q−1
2 (SB + Q12)T .

The minimal value is xT
0 Sx0.

Remark: The feedback gain L does not depend on x0

Example: First order system

For ẋ(t) = u(t), x(0) = x0,

Minimize
∫ ∞

0

{
x(t)2 + ρu(t)2

}
dt

Riccati equation 0 = 1− S2/ρ [ S = √ρ

Controller L = S/ρ = 1/√ρ [ u = −x/√ρ

Closed loop system ẋ = −x/√ρ [ x = x0e−t/√ρ

Optimal cost
∫ ∞

0

{
x2 + ρu2

}
dt = xT

0 Sx0 = x2
0
√

ρ

What values of ρ give the fastest response? Why?
What values of ρ give smallest optimal cost? Why?
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Lecture 9: Linear Quadratic Control

◮ Dynamic Programming

◮ Riccati equation

◮ Optimal State Feedback

◮ Stability and Robustness

Theorem: Stability of the closed-loop system

Assume that

Q =

 Q1 Q12

QT
12 Q2




is positive definite and that there exists a positive-definite
steady-state solution S to the algebraic Riccati equation. Then
the optimal controller u(t) = −Lx(t) gives an asymptotically
stable closed-loop system ẋ(t) = (A− B L)x(t).
Proof:

d
dt

x(t)T Sx(t) = 2xT Sẋ = 2xT S(Ax + Bu)

= −
(

xT Q1x + 2xT Q12u+ uT Q2u
)
< 0 for x(t) ,= 0

Hence x(t)T Sx(t) is decreasing and tends to zero as t →∞.

How to solve the LQ problem in Matlab

[L,S,E] = LQR(A,B,Q,R,N) calculates the optimal gain
matrix L such that the state-feedback law u = -Lx
minimizes the cost function

J = Integral x’Qx + u’Ru + 2*x’Nu dt

subject to the system dynamics dx/dt = Ax + Bu

E = EIG(A-B*L)

LQRD solves the corresponding discrete time problem

Example – Double integrator

A =

0 1

0 0


 B =


0

1


 Q1 =


1 0

0 0


 Q2 = ρ x(0) =


1

0




States and inputs (dotted) for ρ = 0.01, ρ = 0.1, ρ = 1, ρ = 10
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Closed loop poles:
s = 2−1/2ρ−1/4(−1± i)
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Stability robustness of optimal state feedback
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Nyquist Diagram
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Notice that the distance from L(iω I − A)−1 B to −1 is never
smaller than 1. This is always true(!) for linear quadratic optimal
state feedback when Q1 > 0, Q12 = 0 and Q2 = ρ > 0 is scalar.
Hence the phase margin is at least 60○.

Proof of stability robustness

Using the Riccati equation

0 = Q1 + AT S+ SA− LT Q2 L L = Q−1
2 (SB + Q12)T

it is straightforward to verify that

[
I + L(iω − A)−1 B

]∗
Q2

[
I + L(iω − A)−1 B

]
=

[
(iω − A)−1 B

I

]∗ [ Q1 Q12
Q∗

12 Q2

][
(iω − A)−1 B

I

]

In particular, with Q1 > 0, Q12 = 0, Q2 = ρ > 0
[
1+ L(iω − A)−1 B

]∗
ρ
[
1+ L(iω − A)−1 B

]
= BT [(iω − A)−1]∗Q1(iω − A)−1 B + ρ

≥ ρ

Dividing by ρ gives

p1+ L(iω − A)−1 Bp ≥ 1

Lecture 9: Summary

◮ Dynamic Programming

◮ Riccati equation

◮ Optimal State Feedback

◮ Stability and Robustness

Next Lecture: Linear Quadratic Gaussian Control

Plant

Controller

✛ ✛

✛

✲
control inputs u

controlled variables z

measurements y

distubances w

For a linear plant, minimize a quadratic function of the map
from disturbance w to controlled variable z
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