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L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach
L12-L14 Controller optimization: Numerical approach

Lecture 8: Multivariable and Decentralized Control

◮ Transfer functions for MIMO-systems
◮ vehicles
◮ power network
◮ process control industry

◮ Limitations due to unstable multivariable zeros
◮ Decentralized/decoupled control by pairing of signals
◮ Short warning on integral action in parallel systems

See “Lecture notes” and [G&L, Ch. 1 and 8.1–8.3]

Typical Process Control System Example MIMO-system: A Distillation Column
Example: Distillation column: raw oil inserted at bottom →
different petro-chemical subcomponents extracted
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Outputs: Inputs:
y1 = top draw composition u1 = top draw flowrate
y2 = side draw composition u2 = side draw flowrate

u3 = bottom temperature control input

Multivariable transfer functions
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Order matters!!

Z(s) = PCF ⋅ R(s) + P ⋅ D(s) − PC ⋅ [N(s) + Z(s)]
[I + PC]Z(s) = PCF ⋅ R(s) + P ⋅ D(s) − PC ⋅ N(s)

Z(s) = [I + PC]−1 ⋅ (PCF ⋅ R(s) + P ⋅ D(s) − PC ⋅ N(s))

Notice that [I + PC]−1 is generally not the same as [I + CP]−1.

Sensitivity functions for MIMO-systems

Output sensitivity function
S = (I + PC)−1

Input sensitivity function
(I + CP)−1

Complementary sensitivity function
T = (I + PC)−1PC

G?→?

G?→?

G?→?

1-minute problem:

Find the transfer functions above in the block diagram on
the previous slide. (Extra: What are the dimensions?)

Some useful math relations
Notice the following identities:

(i) [I + PC]−1P = P[I + CP]−1

(ii) C[I + PC]−1 = [I + CP]−1C

(iii) T = P[I + CP]−1C = PC[I + PC]−1 = [I + PC]−1PC

(iv) S+ T = I

Proof:
The first equality follows by multiplication on both sides with
(I + PC) from the left and with (I + CP) from the right.

Left: [I + PC][I + PC]−1P[I + CP] = I ⋅ [P+ PCP] = [I + PC]P
Right: [I + PC]P[I + CP]−1[I + CP] = [I + PC]P ⋅ I = [I + PC]P

–“Push through and keep track of order”

Lecture 8: Multivariable and Decentralized Control

◮ Transfer functions for MIMO-systems
◮ Limitations due to unstable multivariable zeros
◮ Decentralized/decoupled control by pairing of signals
◮ Short warning on integral action in parallel systems

1



Hard limitations from unstable zeros

If the plant has an unstable zero zu, then the specification

∥∥∥[I + P(iω )C(iω )]−1
∥∥∥ <

√
2√

1+ z2
u/ω 2

for all ω

is impossible to satisfy.
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Hard limitations from unstable poles

If the plant has an unstable pole pu, then the specification

∥∥∥P(iω )C(iω )[I + P(iω )C(iω )]−1
∥∥∥ <

√
2pu√

ω 2 + p2
u

for all ω

is impossible to satisfy.
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Non-minimum phase MIMO System

Example [G&L, Ch 1]
Consider a feedback system Y(s) = (I + PC)−1 ⋅ R(s) with the
multivariable process

P(s) =
[ 2

s+1
3

s+2
1

s+1
1

s+1

]

Computing the determinant

det P(s) = 2
(s+ 1)2 −

3
(s+ 2)(s+ 1) =

−s+ 1
(s+ 1)2(s+ 2)

shows that the process has an unstable zero at s = 1, which
will limit the achievable performance.

See lecture notes for details of the following slides (checking
three different controllers)

Example — controller 1

The controller

C1(s) =
[ K1(s+1)

s −3K2(s+0.5)
s(s+2)

− K1(s+1)
s

2K2(s+0.5)
s(s+1)

]

gives the diagonal loop transfer matrix

P(s)C1(s) =
[ K1(−s+1)

s(s+2) 0

0 K2(s+0.5)(−s+1)
s(s+1)(s+2)

]

Hence the system is decoupled into to scalar loops, each with
an unstable zero at s = 1 that limits the bandwidth.

The closed loop step responses are shown in Figure ??.

Step responses using controller 1
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Figure : Closed loop step responses with decoupling controller C1(s)
for the two outputs y1 (solid) and y2 (dashed). The upper plot is for a
reference step for y1. The lower plot is for a reference step for y2.

Example – controller 2

The controller

C2(s) =
[

K1(s+1)
s K2

− K1(s+1)
s K2

]

gives the diagonal loop transfer matrix

P(s)C2(s) =
[

K1(−s+1)
s(s+2)

K2(5s+7)
(s+2)(s+1)

0 2K2
s+1

]

Now the decoupling is only partial:
Output y2 is not affected by r1. Moreover, there is no unstable
zero that limits the rate of response in y2!

The closed loop step responses for K1 = 1, K2 = 10 are shown
in Figure ??.

Step responses using controller 2
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Figure : Closed loop step responses with controller C2(s) for the two
outputs y1 (solid) and y2 (dashed). The right half plane zero does not
prevent a fast y2-response to r2 but at the price of a simultaneous
undesired response in y1.

Example – controller 3

The controller

C3(s) =
[

K1
−K2(s+0.5)

s(s+2)
K1

2K2(s+0.5)
s(s+1)

]

gives the diagonal loop transfer matrix

P(s)C3(s) =
[ K1(5s+7)
(s+1)(s+2) 0

2K1
s+1

K2(−1+s)(s+0.5)
s(s+1)2(s+2)

]

In this case y1 is decoupled from r2 and can respond arbitrarily
fast for high values of K1, at the expense of bad behavior in y2.
Step responses for K1 = 10, K2 = −1 are shown in Figure ??.
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Step responses using controller 3
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Figure : Closed loop step responses with controller C3(s) for the two
outputs y1 (solid) and y2 (dashed). The right half plane zero does not
prevent a fast y1-response to r1 but at the price of a simultaneous
undesired response in y2.

Example — summary

To summarize, the example shows that even though a
multivariable unstable zero always gives a performance
limitation, it is possible to influence where the effects should
show up.
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Interaction of Simple Loops

ysp1

ysp2

u1

u2

y1

y2

C1

C2

Process

Y1(s) = p11(s)U1(s) + p12U2(s)
Y2(s) = p21(s)U1(s) + p22U2(s),

What happens when the controllers are tuned individually?

Rosenbrock’s Example

There is a nice collection of linear multivariable systems with
interesting properties. Here is one of them

P(s) =




1
s+ 1

2
s+ 3

1
s+ 1

1
s+ 1




Very benign subsystems (compare with example in [G&L, Ch.1]).

The transmission zeros are given by

det P(s) = 1
s+ 1

( 1
s+ 1

− 2
s+ 3

)
= 1− s
(s+ 1)2(s+ 3) = 0.

Difficult to control the system with gain crossover frequencies
larger than ω�c = 0.5.

An Example

Controller C1 is a PI controller with gains k1 = 1, ki = 1, and the
C2 is a proportional controller with gains k2 = 0, 0.8, and 1.6.
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The second controller has a major impact on the first loop!

RGA / Bristol’s Relative Gain

◮ A simple way of measuring interaction based on static
properties

◮ Edgar H. Bristol, "On a new measure of interaction for
multivariable process control", [IEEE TAC 11(1967) pp. 133–135]

◮ Idea: What is effect of control of one loop on the steady
state gain of another loop?

◮ Consider one loop when the other loop is under perfect
control

Y1(s) = p11(s)U1(s) + p12U2(s)
0 = p21(s)U1(s) + p22U2(s).

RGA / Bristol’s Relative Gain

Consider the first loop u1 → y1 when the second loop is in
perfect control (y2 = 0)

Y1(s) = p11(s)U1(s) + p12U2(s)
0 = p21(s)U1(s) + p22U2(s).

Eliminating U2(s) from the first equation gives

Y1(s) =
p11(s)p22(s) − p12(s)p21(s)

p22(s)
U1(s).

The ratio of the static gains of loop 1 when the second loop is
open and closed is

λ = p11(0)p22(0)
p11(0)p22(0) − p12(0)p21(0)

.

Parameter λ is called Bristol’s interaction index
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Bristol’s Relative Gain Array (RGA)
Let P(s) be an n$ n matrix of transfer functions. The relative
gain array is

Λ = P(0). ⋆ P−T(0)
The product .⋆ is “element-by-element product” (Schur or
Hadamard product, same notation in matlab). Properties

◮ (A. ⋆ B)T = AT . ⋆ BT

◮ P diagonal or triangular gives Λ = I
◮ Not effected by diagonal scalings

Insight and use

◮ A measure of static interactions for square systems which
tells how the gain in one loop is influenced by perfect
feedback on all other loops

◮ Dimension free. Row and column sums are 1.
◮ Negative elements correspond to sign reversals due to

feedback of other loops

RGA in Control




y1
...

ym


 = P




u1
...

um







u1
...

um


 = P−1




y1
...

ym




◮ Pkj gives the map u j → yk when ui = 0 for i ,= j
◮ [P−1] jk gives the map yk → u j when yi = 0 for i ,= k

If [RG A(P)]k, j = 1, then only yk is needed to recover u j . This
means strong coupling and u j is a natural input for control of yk.

Pairing

When designing complex systems loop by loop we must decide
what measurements should be used as inputs for each
controller. This is called the pairing problem. The choice can be
governed by physics but the relative gain can also be used

Consider the previous example

P(0) =

1 2

1 1


 , P−1(0) =


−1 2

1 −1




Λ = P(0). ⋆ P−T(0) =

−1 2

2 −1


 ,

◮ Negative sign indicates the sign reversal found previously
◮ Better to use reverse pairing, i.e. let u2 control y1

Step Responses with Reverse Pairing
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◮ U2 =
(

1+ 1
s

)
(Yref1 − Y1)

◮ u1 = −k2y2 with k2 = 0, 0.8, and 1.6.

Summary for 2$ 2 Systems (RGA)

λ = 1 No interaction
λ = 0 Closed loop gain u1 → y1 is zero. Avoid this.
0 < λ < 1 Closed loop gain u1 → y1 is larger than open
loop gain.
λ > 1 Closed loop gain u1 → y1 is smaller than open loop
gain. Interaction increases with increasing λ . Very difficult
to control both loops independently if λ is very large.
λ < 0 The closed loop gain u1 → y1 has different sign than
the open loop gain. Opening or closing the second loop
has dramatic effects. The loops are counteracting each
other. Such pairings should be avoided for decentralized
control and the loops should be controlled jointly as a
multivariable system.

Interactions Can be Beneficial

P(s) =

p11(s) p12(s)

p21(s) p22(s)


 =




s− 1
(s+ 1)(s+ 2)

s
(s+ 1)(s+ 2)

−6
(s+ 1)(s+ 2)

s− 2
(s+ 1)(s+ 2)




.

The relative gain array

R =

1 0

0 1


 ,

Transmission zeros

det P(s) = (s− 1)(s− 2) + 6s
(s+ 1)2(s+ 2)2 = s2 + 4s+ 2

(s+ 1)2(s+ 2)2

Difficult to control individual loops fast because of the zero at
s = 1. Since there are no multivariable zeros in the RHP the
multivariable system can easily be controlled fast but this
system is not robust to loop breaks.

The Quadruple Tank

u1 u2

y1 y2

y3 y4

γ 1

1− γ 1

γ 2

1− γ 2

Tank 1
(A2)

Tank 2
(B2)

Tank 3
(A1)

Tank 4
(B1)

Pump 1 (BP) Pump 2 (AP)

Transfer Function of Linearized Model
Transfer function from u1, u2 to y1, y2

P(s) =




γ 1c1

1+ sT1

(1− γ 2)c1

(1+ sT1)(1+ sT3)
(1− γ 1)c2

(1+ sT2)(1+ sT4)
γ 2c2

1+ sT2




Transmission zeros

det P(s) =
(1+ sT3)(1+ sT4) −

(1− γ 1)(1− γ 2)
γ 1γ 2

(1+ sT1)(1+ sT2)(1+ sT3)(1+ sT4)

◮ No interaction of γ 1 = γ 2 = 1
◮ Minimum phase if 1 ≤ γ 1 + γ 2 ≤ 2
◮ Nonminimum phase if 0 < γ 1 + γ 2 ≤ 1.
◮ Intuition?
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Relative Gain Array

Zero frequency gain matrix

P(0) =

 γ 1c1 (1− γ 2)c1
(1− γ 1)c2 γ 2c2




The relative gain array

RG A(P(0)) =

 λ 1− λ

1− λ λ




where
λ = γ 1γ 2

γ 1 + γ 2 − 1

◮ No interaction for γ 1 = γ 2 = 1
◮ Severe interaction if γ 1 + γ 2 < 1

A multivariable control problem

-The water is -Now it is too hot! -Now it is too cold! -Now it is too deep!
too cold!

How to do if we want to separate control of
◮ temperature?
◮ water level?

LC

L

Decoupling
Simple idea: Find a compensator so that the system appears to
be without coupling ("block-diagonal transfer function matrix").

Many versions – here we will consider

◮ Input decoupling Q = PD1
◮ Output decoupling Q = D2P
◮ “both” Q = D2PD1

but many different methods including

◮ Conventional (Feedforward)
◮ Inverse (Feedback)
◮ Static

Important to consider windup, manual control and mode
switches.

◮ Keep the decentralized philosophy

yuv

w

PC D1

D2

Find D1 and D2 so that the controller sees a “diagonal plant”:

D2PD1 =




∗ 0 0
0 ∗ 0
0 0 ∗




Then we can use a "decentralized" controller C with same
block-diagonal structure.

Decoupling —- Flight Control

◮ Longitudinal
◮ Lateral

May be good to decouple interaction to outputs, but you should
also be careful not to waste control action to “strange
decouplings”!!

Lecture 8: Multivariable and Decentralized Control

◮ Transfer functions for MIMO-systems
◮ Limitations due to unstable multivariable zeros
◮ Decentralized/decoupled control by pairing of signals
◮ Short warning on integral action in parallel systems

Systems with Parallel Actuation

ω

  
wsp

    A1

    A2    C2

    C1

Gearbox

◮ Motor drives for papermachines and rolling mills
◮ Trains with several motors or several coupled trains
◮ Power systems

A Prototype Example

J
dω
dt
+Dω = M1+M2−ML,

Proportional control

M1 = M10 + K1(ω sp −ω )
M2 = M20 + K2(ω sp −ω )

ω

  
wsp

    A1

    A2    C2

    C1

Gearbox

The proportional gains tell how the load is distributed

J
dω
dt
+ (D + K1 + K2)ω = M10 + M20 − ML + (K1 + K2)ω sp.

A first order system with time constant T = J/(D + K1 + K2)
Discuss response speed, damping and steady state

ω = ω 0 =
K1 + K2

D + K1 + K2
ω sp +

M10 + M20 − ML

D + K1 + K2
.
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Integral Action?

What if we instead use
two PI-controllers?

WARNING!!!

ω

  
wsp

    A1

    A2    C2

    C1

Gearbox

Prototypes for lack of controllability and observability!

Power Systems - Massive Parallellism

◮ Edison’s experience
Two generators with
governors having
integral action

◮ Many generators supply
power to the net.

Frequency control
Voltage control

◮ Isochronous governors
(integral action) and
governors with
speed-drop (no integral
action)

Summary

◮ All real systems are coupled
◮ Multivariable zeros - limitations

◮ Never forget process redesign
◮ Relative gain array and singular values give insight
◮ Why decouple

Simple system.
SISO design, tuning and operation can be used
What is lost?

◮ Parallel systems
One integrator only!

◮ Next lecture: Multivariable design LQ/LQG
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