
Summary of Last Lecture

◮ Look at all transfer functions the closed-loop system!
(Gang of Four / Gang of six)

◮ Stochastic disturbances
◮ From state realization to output spectrum
◮ From output spectrum to transfer function

From state realization to output spectrum
Consider the linear system

ẋ = Ax + Bv, Φv(ω ) = R

The transfer function from v to x is

G(s) = (sI − A)−1 B

and the spectrum for x will be

Φx(ω ) = (iω I − A)−1 BR B∗(−iω I − A)−T
︸ ︷︷ ︸

G(iω )∗

Covariance matrix for state x:

Πx = Rx =
1

2π

∫ ∞

−∞
Φx(ω )dω

can be computed by solving AΠx + Πx AT + BRBT = 0.

From output spectrum to transfer function

✲ G(s) ✲
v y

Find a filter G(s) such that a process y generated by filtering
unit intensity white noise through G will give

φ y(ω ) =
ω 2 + 4

ω 4 + 10ω 2 + 9
,

Solution. We have

φ y(ω ) =
ω 2 + 4

(ω 2 + 1)(ω 2 + 9)
=

∣∣∣∣
iω + 2

(iω + 1)(iω + 3)

∣∣∣∣
2

so G(s) = s+2
(s+1)(s+3) works. So does G(s) = s−2

(s+1)(s+3) .

Lecture 4: Loop shaping design

◮ Specifications in frequency domain
◮ Loop shaping design

Continuing from lecture 3...

◮ The closed-loop system
◮ Look at all transfer functions in the loop!

(Gang of Four / Gang of six)
◮ Robustness

New today

◮ Loop shaping

[Glad & Ljung] Ch. 6.4–6.6, 8.1–8.2 + AK
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Key Issues

Find a controller that

A: Reduces effects of load disturbances
B: Does not inject to much measurement noise into the

system
C: Makes the closed loop insensitive to variations in the

process
D: Makes output follow command signals

Convenient to use a controller with two degrees of freedom, i.e.
separate signal transmission from y to u and from r to u. This
gives a complete separation of the problem: Use feedback to
deal with A, B, and C. Use feedforward to deal with D!

Time domain specifications

◮ Step response (w.r.t reference and/or load disturbance)
◮ rise-time Tr
◮ overshoot
◮ settling time Ts
◮ static error e0

◮ ...
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Frequency domain specifications

Closed loops specs.
◮ resonace peak Mp

◮ bandwidth ω B

Open-loop measures
◮ MS and MT -circles
◮ Amplitude margin Am,

phase margin φm

◮ cross-over frequency
ω c

◮ ...

Note: Often the design is made in Bode/Nyquist/Nichols
diagrams for loop-gain L = PC (open loop system)
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Specifications on closed loop system
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Would like:

◮ Small influence of low-frequency disturbance d on z
◮ Limited amplification of high-frequency noise n in control u
◮ Robust stability despite high-frequency uncertainty

[Lecture 2]:

Different interpretations of the Sensitivity function S =
1

1+ PC

1. S = Gn→y(s) = Gr→e(s) [See previous slide]

◮ Note: S = Gr→e(s); Want low gain for low fq’s...

2. S = d(log T)
d(log P) =

dT/T
dP/P

◮ ("How sensitive is the closed loop T wrt process variations")

3. S measures the distance from the Nyquist plot to (−1+0i).

R−1 = sup
ω

∣∣∣∣
1

1+ P(iω )C(iω )

∣∣∣∣

−1

Re

Im

R

P(iω )C(iω )

Frequency domain specs.

Closed-loop:
Find specifications WT and WS for closed-loops transfer
functions s.t

pT(iω )p ≤ pW−1
T (iω )p

pS(iω )p ≤ pW−1
S (iω )p

(Magnitude transfers to singular values for MIMO-systems)

Examples:

◮ pS(iω )p < 1.5 for ω < 5 Hz
◮ pSp < pW−1

S p = s/(s+10)
◮ pT p < pW−1

T p = 10/(s+10)
◮ “The closed loop system should have a bandwidth of at

least ... rad/s”
◮

Frequency domain specs.
Closed-loop:
Find specifications WT and WS for closed-loops transfer
functions s.t

pT(iω )p ≤ pW−1
T (iω )p

pS(iω )p ≤ pW−1
S (iω )p

(Magnitude transfers to singular values for MIMO-systems)

These specifications can not be chosen independently of each
other.

S+ T = 1

Limiting factors:

◮ Fundamental limitations [Lecture 7/Ch 7]:
◮ RHP zero at z =[ ω BS ≤ z/2
◮ Time delay T =[ ω BS ≤ 1/T
◮ RHP pole at p =[ ω OT ≥ 2p

◮ Bode’s integral theorem
◮ The "waterbed effect"

◮ Bode’s relation
◮ good phase margin requires certain distance between ω BS

and ω 0T

◮ Model uncertainty:
◮ Robust stability gives new "forbidden area"
◮ Robust performance somewhat more complicated

Design: Consider open loop system

Try to look at loop-gain L = PC for design and to translate
specifications of S & T into specs of L

S =
1

1+ L
( 1/L if L is Large

T =
L

1+ L
( L if L is small

Classical loop shaping:

◮ design C so that L = PC satisfies constraints on S and T
◮ how are the specifications related?
◮ what to do with the regions around cross-over frequency

ω c (where pLp = 1)?

Sensitivity vs Loop Gain

S =
1

1+ L

pS(iω )p ≤ pW−1
S (iω )p Z[ p1+ L(iω )p > pWS(iω )p

small frequencies, WS large =[ 1+ L large, and pLp ( p1+ Lp.

pL(iω )p ≥ pWS(iω )p (approx.)

(typically valid for ω < ω BS)

Complementary Sensitivity vs Loop Gain

T =
L

1+ L

pT(iω )p ≤ pW−1
T (iω )p Z[

pL(iω )p
p1+ L(iω )p

≤ pW−1
T (iω )p

large frequencies, W−1
T small =[ pT p ( pLp

pL(iω )p ≤ pW−1
T (iω )p (approx.)

(typically valid for ω > ω OT )
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Resulting constraints on loop-gain L:

Remark: approximations inexact around cross-over frequency
ω c. In this region, focus is on stability margins Am, φm.

These requirements is to say that the loop transfer matrix

L = P(iω )C(iω )

should have small norm qP(iω )C(iω )q at high frequencies,
while at low the frequencies instead q[P(iω )C(iω )]−1q should
be small.
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Specifying pT(iω )p ≤ MT and pS(iω )p ≤ MS gives bounds for
the amplitude and phase margins (but not the other way round!)

pS(iω )p ≤ MS =[ Am >
MS

MS − 1
, φm > 2 arcsin 1
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Q: Why does not Am and φm give bounds on MT and MS?

Classical loop shaping

Map specifications on requirements on loop gain L.

◮ Low-frequency specifications from WS

◮ High-frequency specifications from W−1
T

◮ Around cross-over frequency, mapping is crude
◮ Position cross-over frequency (constrained by WS, WT )
◮ Adjust phase margin (e.g. from MS, MT specifications)

Lead-lag compensation

Shape loop gain L = PC using a compensator C composed of

◮ Lag (phase retarding) elements

Cla� =
s+ a

s+ a/M
, M > 1

◮ Lead (phase advancing) elements

Clead = N
s+ b

s+ bN
, N > 1

◮ Gain
K

Typically

C = K
s+ a

s+ a/M
⋅ N

s+ b
s+ bN

Properties of leads-lag elements

◮ Lag (phase retarding) elements
◮ Reduces static error
◮ Reduces stability margin

◮ Lead (phase advancing) elements
◮ Increased speed by increased ω c
◮ Increased phase
=[ May improve stability

◮ Gain
◮ Translates magnitude curve
◮ Does not change phase curve

See "Collection of Formulae" for lead-lag link diagrams

Iterative lead-lag design

◮ Step 1: Lag (phase retarding) element
◮ Add phase retarding element to get low-frequency

asymptote right
◮ Step 2: Phase advancing element

◮ Use phase advancing element to obtain correct phase
margin

◮ Step 3: Adjust gain
◮ Usually need to "lift up" or "push down" amplitude curve to

obtain the desired cross-over frequency.

Adjusting the gain in Step 3 leaves the phase unaffected,
but may ruin low-frequency asymptote (need to revise lag
element) =[ An iterative method!

Example of other compensation-link:

Notch-filter
s2 + 0.01s+ 1

s2 + 2s+ 1

Bode Diagram
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Bode, Nyquist and Nichols diagrams

lo�pPCp = lo�pPp + lo�pCp
ar�{PC} = arg{P}+ar�{C}

Bode Diagram
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Quatitative Feedback Design Theory was developed by
Horowitz et. al. to ensure desired loop-gain properties despite
model uncertainties.

Basic principle: Let the (uncertain) system be represented by
several transfer functions and at each frequency we get a
corresponding set (template) of points which all should satisfy
the constraints.

Feedforward design

Σ
r
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The reference signal r specifies the desired value of y.

Ideally
P(s)C(s)

1+ P(s)C(s)
F(s) ( 1

Equivalently

F(s) (
1+ P(s)C(s)

P(s)C(s)

Exact equality is generally impossible because of pole excess
in P.

The simplest and most common approximation is to use a
constant gain

F =
1+ P(0)C(0)

P(0)C(0)

A more advanced option is

F(s) =
1+ P(s)C(s)

P(s)C(s)(sT + 1)d

for some suitable time constant T and d large enough to make
F proper and implementable.

Example

P(s) =
1

(s+ 1)4
F(s) =

1+ P(s)C(s)
P(s)C(s)(sT + 1)d

The closed loop transfer function from r to u then becomes

C(s)
1+ P(s)C(s)

F(s) =
(s+ 1)4

(sT + 1)4

which has low-fq gain 1, but gain 1/T4 for ω −→∞.

ΣΣ

r

My

Mu

C P

−1

um

ym u y

Notice that Mu and My can be viewed as generators of the
desired output ym and the inputs um which corresponds to ym.

Design of Feedforward revisited

The transfer function from r to e = ym − y is (My − PMu)S

Ideally, Mu should satisfy Mu = My/P. This condition does not
depend on C!

Since Mu = My/P should be stable, causal and not include
derivatives we find that

◮ Unstable process zeros must be zeros of My

◮ Time delays of the process must be time delays of My

◮ The pole excess of My must be greater than the pole
excess of P

Take process limitations into account!
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Example of Feedforward Design revisited

If

P(s) =
1

(s+ 1)4
My(s) =

1
(sT + 1)4

then

Mu(s) =
My(s)
P(s)

=
(s+ 1)4

(sT + 1)4
Mu(∞)

Mu(0)
=

1
T4

Fast response (T small) requires high gain of Mu.

Bounds on the control signal limit how fast response we can obtain.

Summary

Frequency design;

◮ Good mapping between S,T and L = PC at low and high
frequencies (mapping around cross-over frequency less
clear)

◮ Simple relation between C and L =[ easy to shape L!
◮ Lead-lag control: iterative adjustment procedure
◮ What if closed-loop specifications are not satisfied?

◮ we made a poor design (did not iterate enough), or
◮ the specifications are not feasible (fundamental limitations

in Lecture 7)
◮ Alternatives:

◮ H∞-optimal control: finds stabilizing controller that satisfies
constraints, if such a controller exists

Feedforward design

Next lecture

Case study DVD-player

◮ Use loop-shaping techniques from this lecture for focus
control design in DVD-player

◮ track following (modelling of disturbances, control)

Radial electromagnet

Focus electromagnet

Springs

Light detectors

Laser

A B

C D

Tracks

Lens
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