Summary of Last Lecture

- Look at all transfer functions the closed-loop system!
 (Gang of Four / Gang of six)
- Stochastic disturbances
- From state realization to output spectrum
- From output spectrum to transfer function

From state realization to output spectrum

Consider the linear system

$$\dot{x} = Ax + Bv, \qquad \Phi_v(\omega) = R$$

The transfer function from v to x is

$$G(s) = (sI - A)^{-1}B$$

and the spectrum for x will be

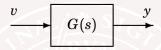
$$\Phi_x(\omega) = (i\omega I - A)^{-1} BR \underbrace{B^*(-i\omega I - A)^{-T}}_{G(i\omega)^*}$$

Covariance matrix for state x:

$$\Pi_x = rac{1}{2\pi} \int_{-\infty}^{\infty} \Phi_x(\omega) d\omega$$

can be computed by solving $A\Pi_x + \Pi_x A^T + BRB^T = 0$.

From output spectrum to transfer function



Find a filter G(s) such that a process y generated by filtering unit intensity white noise through G will give

$$\phi_y(\omega) = \frac{\omega^2 + 4}{\omega^4 + 10\omega^2 + 9},$$

Solution. We have

$$\phi_{y}(\omega) = \frac{\omega^{2} + 4}{(\omega^{2} + 1)(\omega^{2} + 9)} = \left| \frac{i\omega + 2}{(i\omega + 1)(i\omega + 3)} \right|^{2}$$

so
$$G(s) = \frac{s+2}{(s+1)(s+3)}$$
 works. So does $G(s) = \frac{s-2}{(s+1)(s+3)}$.

Lecture 4: Loop shaping design

Continuing from lecture 3...

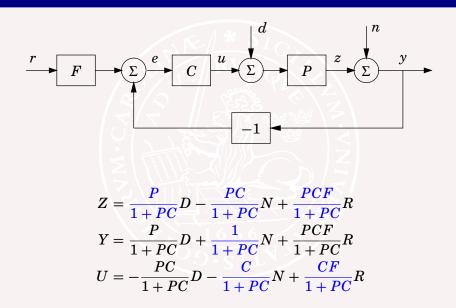
- The closed-loop system
 - Look at all transfer functions in the loop! (Gang of Four / Gang of six)
 - Robustness

New today

Loop shaping

[Glad & Ljung] Ch. 6.4-6.6, 8.1-8.2 + AK

Relations between signals



Key Issues

Find a controller that

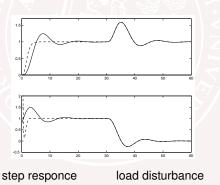
- A: Reduces effects of load disturbances
- **B:** Does not inject to much measurement noise into the system
- C: Makes the closed loop insensitive to variations in the process
- D: Makes output follow command signals

Convenient to use a controller with two degrees of freedom, i.e. separate signal transmission from y to u and from r to u. This gives a complete separation of the problem: Use feedback to deal with A, B, and C. Use feedforward to deal with D!

Time domain specifications

- Step response (w.r.t reference and/or load disturbance)
 - rise-time T_r
 - overshoot
 - settling time T_s
 - static error e₀

...



Frequency domain specifications

Closed loops specs.

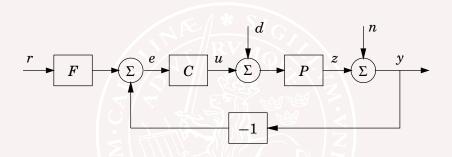
- ullet resonace peak M_p
- bandwidth ω_B

Open-loop measures

- ullet M_S and M_T -circles
- Amplitude margin A_m , phase margin ϕ_m
- cross-over frequency ω_c
- ...

Note: Often the design is made in Bode/Nyquist/Nichols diagrams for loop-gain L=PC (open loop system)

Mini-problem

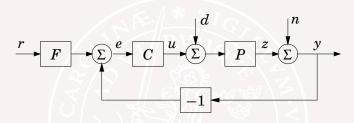


Give an expression for

$$\mathbf{E}\left(y^2+u^2\right)$$

when r = n = 0 and d is white noise.

Specifications on closed loop system



Would like:

- Small influence of low-frequency disturbance d on z
- Limited amplification of high-frequency noise n in control u
- Robust stability despite high-frequency uncertainty

[Lecture 2]:

Different interpretations of the Sensitivity function $S = \frac{1}{1 + PC}$

- $lack S = G_{n o y}(s) = G_{r o e}(s)$ [See previous slide]
 - Note: $S = G_{r \to e}(s)$; Want low gain for low fq's...
- $S = \frac{d(\log T)}{d(\log P)} = \frac{dT/T}{dP/P}$
 - ("How sensitive is the closed loop T wit process variations")
- \odot S measures the distance from the Nyquist plot to (-1+0i).

[Lecture 2]:

Different interpretations of the Sensitivity function $S = \frac{1}{1 + PC}$

- $lack S = G_{n o y}(s) = G_{r o e}(s)$ [See previous slide]
 - Note: $S = G_{r \to e}(s)$; Want low gain for low fq's...
- - ("How sensitive is the closed loop T wrt process variations")
- \odot S measures the distance from the Nyquist plot to (-1+0i)

[Lecture 2]:

Different interpretations of the *Sensitivity function* $S = \frac{1}{1 + PC}$

- $lacksquare S = G_{n o y}(s) = G_{r o e}(s)$ [See previous slide]
 - Note: $S = G_{r \to e}(s)$; Want low gain for low fq's...
- - ("How sensitive is the closed loop T wrt process variations")
- **3** S measures the distance from the Nyquist plot to (-1+0i).

$$R^{-1} = \sup_{\omega} \left| \frac{1}{1 + P(i\omega)C(i\omega)} \right|$$
 Reference to the second sec

Frequency domain specs.

Closed-loop:

Find specifications ${\it W}_{\it T}$ and ${\it W}_{\it S}$ for closed-loops transfer functions s.t

$$|T(i\omega)| \le |W_T^{-1}(i\omega)|$$
$$|S(i\omega)| \le |W_S^{-1}(i\omega)|$$

(Magnitude transfers to singular values for MIMO-systems)

Examples:

- $|S(i\omega)| < 1.5$ for $\omega < 5$ Hz
- $|S| < |W_S^{-1}| = s/(s+10)$
- $|T| < |W_T^{-1}| = 10/(s+10)$
- "The closed loop system should have a bandwidth of at least ... rad/s"

4

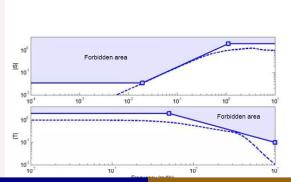
Frequency domain specs.

Closed-loop:

Find specifications W_T and W_S for closed-loops transfer functions s.t

$$|T(i\omega)| \le |W_T^{-1}(i\omega)|$$
$$|S(i\omega)| \le |W_S^{-1}(i\omega)|$$

(Magnitude transfers to singular values for MIMO-systems)



These specifications can not be chosen independently of each other.

$$S+T=1$$

Limiting factors:

- Fundamental limitations [Lecture 7/Ch 7]:
 - RHP zero at $z \Longrightarrow \omega_{BS} \le z/2$
 - Time delay $T \Longrightarrow \omega_{BS} \le 1/T$
 - RHP pole at $p \Longrightarrow \omega_{OT} \ge 2p$
- Bode's integral theorem
 - The "waterbed effect"
- Bode's relation
 - ullet good phase margin requires certain distance between ω_{BS} and ω_{0T}
- Model uncertainty:
 - Robust stability gives new "forbidden area"
 - Robust performance somewhat more complicated

Design: Consider open loop system

Try to look at *loop-gain* L = PC for design and to translate specifications of S & T into specs of L

$$S = \frac{1}{1+L} \approx 1/L \qquad \text{if L is Large}$$

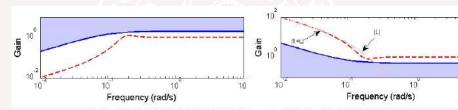
$$T = \frac{L}{1+L} \approx L \qquad \text{if L is small}$$

Classical loop shaping:

- design C so that L = PC satisfies constraints on S and T
- how are the specifications related?
- what to do with the regions around cross-over frequency ω_c (where |L|=1)?

Sensitivity vs Loop Gain

$$\begin{split} S &= \frac{1}{1+L} \\ &|S(i\omega)| \leq |W_S^{-1}(i\omega)| \Longleftrightarrow |1+L(i\omega)| > |W_S(i\omega)| \end{split}$$



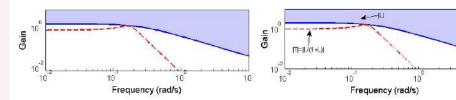
small frequencies, W_S large $\Longrightarrow 1 + L$ large, and $|L| \approx |1 + L|$.

$$|L(i\omega)| \ge |W_S(i\omega)|$$
 (approx.)

(typically valid for $\omega < \omega_{BS}$)

Complementary Sensitivity vs Loop Gain

$$\begin{split} T &= \frac{L}{1+L} \\ &|T(i\omega)| \leq |W_T^{-1}(i\omega)| \Longleftrightarrow \frac{|L(i\omega)|}{|1+L(i\omega)|} \leq |W_T^{-1}(i\omega)| \end{split}$$

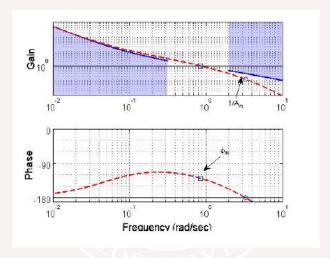


large frequencies, W_T^{-1} small $\Longrightarrow |T| \approx |L|$

$$|L(i\omega)| \le |W_T^{-1}(i\omega)| \quad (approx.)$$

(typically valid for $\omega > \omega_{OT}$)

Resulting constraints on loop-gain *L*:

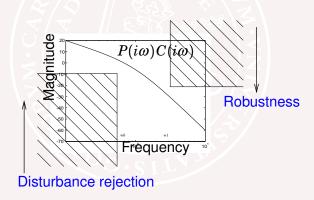


Remark: approximations inexact around cross-over frequency ω_c . In this region, focus is on stability margins A_m , ϕ_m .

These requirements is to say that the *loop transfer matrix*

$$L = P(i\omega)C(i\omega)$$

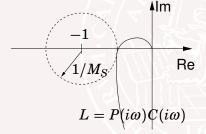
should have small norm $\|P(i\omega)C(i\omega)\|$ at high frequencies, while at low the frequencies instead $\|[P(i\omega)C(i\omega)]^{-1}\|$ should be small.

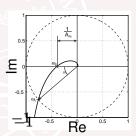


M_S and M_T and stability margins

Specifying $|T(i\omega)| \leq M_T$ and $|S(i\omega)| \leq M_S$ gives bounds for the amplitude and phase margins (but not the other way round!)

$$|S(i\omega)| \leq M_S \qquad \Longrightarrow \qquad A_m > rac{M_S}{M_S-1}, \quad \phi_m > 2 rcsin rac{1}{M_S}$$



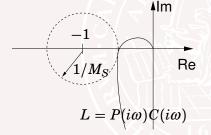


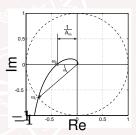
Q: Why does not A_m and ϕ_m give bounds on M_T and M_S ?

M_S and M_T and stability margins

Specifying $|T(i\omega)| \leq M_T$ and $|S(i\omega)| \leq M_S$ gives bounds for the amplitude and phase margins (but not the other way round!)

$$|S(i\omega)| \leq M_S \qquad \Longrightarrow \qquad A_m > rac{M_S}{M_S-1}, \quad \phi_m > 2 rcsin rac{1}{M_S}$$





Q: Why does not A_m and ϕ_m give bounds on M_T and M_S ?

Classical loop shaping

Map specifications on requirements on loop gain L.

- Low-frequency specifications from W_S
- High-frequency specifications from W_T^{-1}
- Around cross-over frequency, mapping is crude
 - Position cross-over frequency (constrained by W_S , W_T)
 - Adjust phase margin (e.g. from M_S , M_T specifications)

Lead-lag compensation

Shape loop gain L = PC using a compensator C composed of

Lag (phase retarding) elements

$$C_{lag} = \frac{s+a}{s+a/M}, \quad M > 1$$

Lead (phase advancing) elements

$$C_{lead} = N \frac{s+b}{s+bN}, \quad N > 1$$

Gain

K

Typically

$$C = K \frac{s+a}{s+a/M} \cdot N \frac{s+b}{s+bN}$$

Properties of leads-lag elements

- Lag (phase retarding) elements
 - Reduces static error
 - Reduces stability margin
- Lead (phase advancing) elements
 - Increased speed by increased ω_c
 - Increased phase
 - ⇒ May improve stability
- Gain
 - Translates magnitude curve
 - Does not change phase curve

See "Collection of Formulae" for lead-lag link diagrams

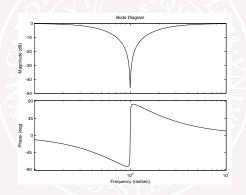
Iterative lead-lag design

- Step 1: Lag (phase retarding) element
 - Add phase retarding element to get low-frequency asymptote right
- Step 2: Phase advancing element
 - Use phase advancing element to obtain correct phase margin
- Step 3: Adjust gain
 - Usually need to "lift up" or "push down" amplitude curve to obtain the desired cross-over frequency.

Adjusting the gain in Step 3 leaves the phase unaffected, but may ruin low-frequency asymptote (need to revise lag element) \Longrightarrow An iterative method!

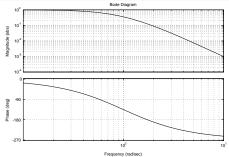
Example of other compensation-link:

Notch-filter
$$\frac{s^2 + 0.01s + 1}{s^2 + 2s + 1}$$

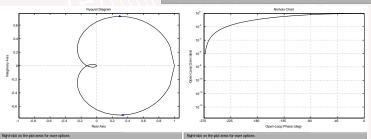


Bode, Nyquist and Nichols diagrams

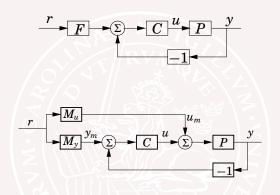
$$\begin{split} \log|PC| &= \log|P| + \log|C| \\ \arg\{PC\} &= \arg\{P\} + \arg\{C\} \end{split}$$



Right-click on the plot areas for more options



Feedforward design



The reference signal r specifies the desired value of y. Ideally

$$\frac{P(s)C(s)}{1 + P(s)C(s)}F(s) \approx 1$$

Equivalently

$$F(s) \approx \frac{1 + P(s)C(s)}{P(s)C(s)}$$

Exact equality is generally impossible because of pole excess in P.

The simplest and most common approximation is to use a constant gain

$$F = \frac{1 + P(0)C(0)}{P(0)C(0)}$$

A more advanced option is

$$F(s) = \frac{1 + P(s)C(s)}{P(s)C(s)(sT+1)^d}$$

for some suitable time constant T and d large enough to make F proper and implementable.

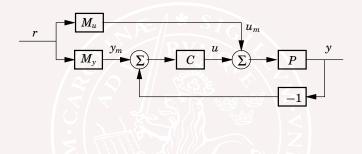
Example

$$P(s) = \frac{1}{(s+1)^4} \qquad F(s) = \frac{1 + P(s)C(s)}{P(s)C(s)(sT+1)^d}$$

The closed loop transfer function from r to u then becomes

$$\frac{C(s)}{1 + P(s)C(s)}F(s) = \frac{(s+1)^4}{(sT+1)^4}$$

which has low-fq gain 1, but gain $1/T^4$ for $\omega \longrightarrow \infty$.



Notice that M_u and M_y can be viewed as generators of the desired output y_m and the inputs u_m which corresponds to y_m .

Design of Feedforward revisited

The transfer function from r to $e = y_m - y$ is $(M_y - PM_u)S$

Ideally, M_u should satisfy $M_u = M_y/P$. This condition does not depend on C!

Since $M_u = M_y/P$ should be stable, causal and not include derivatives we find that

- Unstable process zeros must be zeros of M_{ν}
- ullet Time delays of the process must be time delays of M_y
- The pole excess of M_y must be greater than the pole excess of P

Take process limitations into account!

Example of Feedforward Design revisited

lf

$$P(s) = rac{1}{(s+1)^4} \qquad \qquad M_{\scriptscriptstyle y}(s) = rac{1}{(sT+1)^4}$$

then

$$M_u(s) = rac{M_y(s)}{P(s)} = rac{(s+1)^4}{(sT+1)^4} \qquad \qquad rac{M_u(\infty)}{M_u(0)} = rac{1}{T^4}$$

Fast response (T small) requires high gain of M_u .

Bounds on the control signal limit how fast response we can obtain.

Summary

Frequency design;

- Good mapping between S,T and L=PC at low and high frequencies (mapping around cross-over frequency less clear)
- Simple relation between C and $L \Longrightarrow$ easy to shape L!
- Lead-lag control: iterative adjustment procedure
- What if closed-loop specifications are not satisfied?
 - we made a poor design (did not iterate enough), or
 - the specifications are not feasible (fundamental limitations in Lecture 7)
- Later in the course::
 - Use optimization to find stabilizing controller that satisfies constraints, if such a controller exists

Feedforward design

Course Outline

- L1-L5 Specifications, models and loop-shaping by hand
 - Introduction and system representations
 - Stability and robustness
 - Specifications and disturbance models
 - Control synthesis in frequency domain
 - Case study
- L6-L8 Limitations on achievable performance
- L9-L11 Controller optimization: Analytic approach
- L12-L14 Controller optimization: Numerical approach

Next lecture

Case study DVD-player

- Use loop-shaping techniques from this lecture for focus control design in DVD-player
- track following (modelling of disturbances, control)

