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Yesterdays lecture

Introduction/examples

Overview of course

Review linear systems

Time-domain

models

Frequency-domain

models

Automatic Control LTH, 2013 FRTN10 Multivariable Control, Lecture 2



Lecture 2: Stability and Robustness

Stability

Robustness and sensitivity

Small gain theorem

Demo: "Inverted pendulum"
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Stability is crucial

bicycle

JAS 39 Gripen

Mercedes A-class

ABS brakes
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Stability of autonomous systems

The autonomous system

dx

dt
= Ax(t)

is called exponentially stable if the following equivalent

conditions hold

1 There exist constants α , β > 0 such that

px(t)p ≤ α e−β tpx(0)p for t ≥ 0

2 All eigenvalues of A are in the left half plane (LHP), that is

all eigenvalues have negative real part.

3 All roots of the polynomial det(sI − A) are in the LHP.
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Eigenvalues determine stability

The matrix A can always be written on the form

A = U






λ1 ∗
. . .

0 λn




U

−1. Hence eAt = U






eλ1t ∗
. . .

0 eλnt




U

−1.

The number λ1, . . . ,λn are the eigenvalues of A.

eAt decays exponentially if and only if Re{λ k} < 0 for all k.
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Stability of input-output maps

The transfer function G(s) of a continuous time system, is said

to be input-output stable (I/O-stable, or often just called

“stable”) if the following equivalent conditions hold:

All poles of G have negative real part (G is Hurwitz stable)

The impulse response of G decays exponentially.

Warning: There may be unstable pole-zero cancellations

(which also render the system either uncontrollable and/or

unobservable) and these may not be seen in the transfer

function!!

For discrete time systems the corresponding conditions are : a pulse transfer function
G(z) of a discrete time system

All poles of G are inside the unit circle (G is Schur stable).

The pulse response of G decays exponentially.
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Stability of feedback loops

♥ G0✲✲

−1

✲

✛

✻
Σ

The closed loop system is input-output stable if and only if all

solutions to the equation

1+ G0(s) = 0

are in the left half plane (i.e. has negative real part).
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The Nyquist criterion

If G0(s) is stable, then the closed loop system [1+ G0(s)]
−1 is

stable if and only if the Nyquist curve does not encircle −1

The difference between the number of unstable poles in

[1+ G0(s)]
−1 and the number of unstable poles in G0(s) is

equal to the number of times the point −1 is encircled by the

Nyquist plot in the clockwise direction.
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NOTE: Matlab gives Nyquist plot for both positive and negative frequencies!
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Sensitivity and Robustness

How sensitive is the closed loop system to model errors?

How do we measure the “distance to instability”?

Is it possible to guarantee stability for all systems within

some distance from the ideal model?
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Amplitude and phase margin

Amplitude margin Am

argG(iω 0) = −180
○, pG(iω 0)p =

1

Am

Phase margin φm

pG(iω c)p = 1, argG(iω c) = φm − 180
○
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Mini-problem

❤ k(s+1)
s2+cs+1 e−sT

−1

✲ ✲ ✲ ✲

✛

✻

Nominally k = 1, c = 1 and T = 0. How much margin is there in

each of the parameters before the system becomes unstable?
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Mini-problem — Stability margins
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Figure : Nyquist/Bode plots for the nominal transfer function
(s+1)

(s2+s+1)

For k = c = 1 the open loop transfer function is

s+ 1

s2 + s+ 1
e−sT

The phase margin is 109 ⋅ π
180

rad at ω = 1.4 rad/s.

A time-delay T corresponds to a phase-delay arg{e−iωT} = −ωT

Thus the time-delay margin is 109 ⋅ π
180
/1.4 ( 1.35 sec.
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Mini-problem — Stability margins

Closed loop without delay (T = 0):

Gcl(s) =
P(s)C(s)

1+ P(s)C(s)

=

k(s+1)
s2+cs+1

(

1+ k(s+1)
s2+cs+1

)

=
k(s+ 1)

s2 + cs+ 1+ ks+ k
=

k(s+ 1)

s2 + s(k+ c) + (1+ k)
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How sensitive is T to changes in P?

❤ C(s) P(s)

−1

✲ ✲ ✲ ✲

✛

✻

r y

Y(s) =
P(s)C(s)

1+ P(s)C(s)
︸ ︷︷ ︸

T(s)

R(s)
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dT

dP
=
d

dP

(

1−
1

1+ PC

)

=
C

(1+ PC)2
=

T

P(1+ PC)

Define the sensitivity function, S:

S :=
d(logT)

d(log P)
=
dT/T

dP/P
=

1

1+ PC

and the complementary sensitivity function T :

T := 1− S =
PC

1+ PC
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Note that the

complementary sensitivity function T is the transfer

function Gr→y

sensitivity function S is the transfer function Gm→y

S+ T = 1

Note: there are four different transfer functions for this closed-loop system and all have
to be stable for the system to be stable!

It may be OK to use an unstable controller C
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Nyquist plot illustration

The sensitivity function measures the distance from the Nyquist

plot to −1.

R−1 = sup
ω

∣
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1+ P(iω )C(iω )
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Lecture 2

Stability

Robustness and sensitivity

Small gain theorem
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Robustness

How large perturbations ∆(iω ) can be tolerated without
instability?

❤ ❤G(iω )

C(iω )

∆(iω )

✻
✲ ❄

✛

✲

✲

✲

v w
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Vector Norm and Matrix Norm

For x ∈ Rn, we use the “L2-norm”

pxp =
√

xT x =
√

x21 + ⋅ ⋅ ⋅+ x2n

For M ∈ Rn$n, we use the “L2-induced norm”

qMq := sup
x

pMxp

pxp
= sup

x

√

xTMTMx

xT x
=

√

λ̄(MTM)

Here λ̄(MTM) denotes the largest eigenvalue of MTM . The

fraction pMxp/pxp is maximized when x is a corresponding

eigenvector.
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Different gains in different directions:

[
y1
y2

]

=

[
2 4

0 3

] [
u1
u2

]
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(red):eigenvectors ; (blue): V ; (green): U    A=U*S*VT 

y 2

y=Gu = [4.42      2.85]T,      |y|= 5.26

Example: matlab-demoAutomatic Control LTH, 2013 FRTN10 Multivariable Control, Lecture 2



Example
Matlab-code for singular value decomposition of the
matrix

A =

[

2 4

0 3

]

SVD :
A = U ⋅ S ⋅ V ∗

where both the matrices U and V are unitary (i.e.
have orthonormal columns s.t. V ∗ ⋅ V = I) and S is
the diagonal matrix with (sorted decreasing) singular
values σ i.
Multiplying A with a input vector along the first col-
umn in V gives

A ⋅ V(:,1) = USV
∗ ⋅ V(:,1) =

= US

[

1

0

]

= U(:,1) ⋅ σ1

That is, we get maximal gain σ1 in the output direc-

tion U(:,1) if we use an input in direction V(:,1) (and

minimal gain σ n = σ2 if we use the last column

V(:,n) = V(:,2)).

>> A=[2 4 ; 0 3]

A =

2 4

0 3

>> [U,S,V]=svd(A)

U =

0.8416 -0.5401

0.5401 0.8416

S =

5.2631 0

0 1.1400

V =

0.3198 -0.9475

0.9475 0.3198

>> A*V(:,1)

ans =

4.4296

2.8424

>> U(:,1)*S(1,1)

ans =

4.4296

2.8424
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The L2-norm of a signal

For y(t) ∈ Rn the “L2-norm”

qyq2 :=

√
∫ ∞

0

py(t)p2dt is equal to

√

1

2π

∫ ∞

−∞
pLy(iω )p2dω

The equality is known as Parseval’s formula

The L2-gain of a system For a system S with input u and

output S(u), the L2-gain is defined as

qSq := sup
u

qS(u)q2
quq2
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Miniproblem

What are the gains of the following systems?

1. y(t) = −u(t) (a sign shift)

2. y(t) = u(t− T) (a time delay)

3. y(t) =

∫ t

0

u(τ )dτ (an integrator)

4. y(t) =

∫ t

0

e−(t−τ )u(τ )dτ (a first order filter)
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The L2-gain from frequency data

Consider a stable system S with input u and output S(u) having

the transfer function G(s). Then, the system gain

qSq := sup
u

qS(u)q2
quq2

is equal to qGq∞ := sup
ω
pG(iω )p

Proof. Let y= S(u). Then

qyq2 =
1

2π

∫ ∞

−∞

pLy(iω )p2dω =
1

2π

∫ ∞

−∞

pG(iω )p2 ⋅ pLu(iω )p2dω ≤ qGq2∞quq
2

The inequality is arbitrarily tight when u(t) is a sinusoid near

the maximizing frequency.
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Example: Consider the transfer function matrix G(iω )

G(s) =






2

s+ 1

4

2s+ 1
s

s2 + 0.1s+ 1

3

s+ 1






>> s=tf(’s’)

>> G=[ 2/(s+1) 4/(2*s+1); s/(s^2+0.1*s+1) 3/(s+1)];

>> sigma(G) % plot sigma values of G wrt fq

>> grid on

>> norm(G,inf) % infinity norm = system gain

ans =

10.3577

Automatic Control LTH, 2013 FRTN10 Multivariable Control, Lecture 2



Singular Values
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Figure : The singular values of the tranfer function matrix (prev slide).

Note that G(0)=[2,4 ; 0 3] which corresponds to M in the

SVD-example above. qGq∞ = 10.3577.
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The Small Gain Theorem

r1

r2

e1

e2

S1

S2

Assume that S1 and S2 are input-output stable. If

qS1q ⋅ qS2q < 1, then the gain from (r1, r2) to (e1, e2) in the

closed loop system is finite.
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Proof

Define qyqT =
√
∫ T

0
py(t)p2dt. Then qS(y)qT ≤ qSq ⋅ qyqT .

e1 = r1 + S2(r2 + S1(e1))

qe1qT ≤ qr1qT + qS2q
(

qr2qT + qS1q ⋅ qe1qT

)

qe1qT ≤
qr1qT + qS2q ⋅ qr2qT
1− qS1q ⋅ qS2q

This shows bounded gain from (r1, r2) to e1.

The gain to e2 is bounded in the same way.
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Application to robustness analysis

❢ ❢G(iω )

−C(iω )

∆(iω )

✻
✲ ❄

✛

✲

✲

✲

v w

The diagram can be redrawn as

✛

v w
✲ ∆ ✲

GC
1+GC

✲
✻
❡
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Application to robustness analysis

✛

v w
✲ ∆ ✲

GC
1+GC

✲
✻
❡

The small gain theorem guarantees stability if

q∆q∞ ⋅

∥
∥
∥
∥

GC

1+ GC

∥
∥
∥
∥
∞

< 1
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