
Solutions to Exercise 1. Control in Matlab

1.1 >> A = [0 1; 1 0];

>> B = [1 0]’;

>> C = [0 1];

>> D = 0;

>> eig(A)

ans =

-1

1

1.2 >> sys = ss(A,B,C,D);

>> tf(sys)

Transfer function:

1

-------

s^2 - 1

1.3 >> zero(sys)

ans =

Empty matrix: 0-by-1

>> pole(sys)

ans =

-1

1

>> dcgain(sys)

ans =

-1

1.4 >> s = tf(’s’);

>> P = 1/(s^2+0.6*s+1)

Transfer function:

1

---------------

s^2 + 0.6 s + 1

>> P.InputDelay = 1.5

Transfer function:

1

exp(-1.5*s) * ---------------

s^2 + 0.6 s + 1

>> bode(P)
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Solutions to Exercise 1

>> grid

>> nyquist(P)

>> pzmap(P)

>> step(P)

As seen in the pole-zero map, the open-loop system is stable, as also in-

dicated by the step response. The Bode and Nyquist plots show that the

closed-loop system will be unstable.

1.5 >> Wc = ctrb(A,B);

>> rank(Wc)

ans =

2

Since the controllability matrix has full rank, the system is controllable.

>> p=[1 1.4 1];

>> L=place(A,B,roots(p))

L =

1.4000 2.0000

1.6 P = 1/(s^2+0.6*s+1);

>> C = 0.5*(1+4*s);

>> margin(C*P)

The amplitude margin is infinite, whereas the phase margin is 101○.

1.7 >> CLSYS = feedback(C*P,1)

Transfer function:

2 s + 0.5

-----------------

s^2 + 2.6 s + 1.5

>> CLSYS = minreal(C*P/(1+C*P))

Transfer function:

2 s + 0.5

-----------------

s^2 + 2.6 s + 1.5

1.8 >> step(CLSYS)

>> dcgain(CLSYS)

ans =

0.3333

1.9 >> A=[-1 1 0 -1/2 0; 4 -1 0 -25 8; 0 1 0 0 0; 0 0 0 -20 0; 0 0 0 0 -20];

>> B=[0 0; 3/2 1/2; 0 0; 20 0; 0 20];

>> C=[0 1 0 0 0; 0 0 1 0 0];

>> jas=ss(A,B,C,[0 0; 0 0]);

>> pole(jas)

ans =

0
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Solutions to Exercise 1

1.0000

-3.0000

-20.0000

-20.0000

>> rank(ctrb(jas))

ans =

5

>> rank(obsv(jas))

ans =

4

We see that the system is unstable. This means that without some type of

control, the plane will crash. Fortunately, the system is controllable, which

means that it is possible to stabilise the aircraft with the given actuators.

However, since we do not have observability, we need to have some other

combination of sensors if we to use feedback from observed states.

To get the transfer function, we use

>> G=tf(jas)

Transfer function from input 1 to output...

1.5 s^2 - 468.5 s - 510

#1: ------------------------

s^3 + 22 s^2 + 37 s - 60

1.5 s^2 - 468.5 s - 510

#2: ----------------------------

s^4 + 22 s^3 + 37 s^2 - 60 s

Transfer function from input 2 to output...

0.5 s^2 + 170.5 s + 170

#1: ------------------------

s^3 + 22 s^2 + 37 s - 60

0.5 s^2 + 170.5 s + 170

#2: ----------------------------

s^4 + 22 s^3 + 37 s^2 - 60 s

>> G(1,2) % To output 1 from input 2 (note the order of indexing)

Transfer function:

0.5 s^2 + 170.5 s + 170

------------------------

s^3 + 22 s^2 + 37 s - 60

1.10 >> G1 = 1/(s+1)^3

Transfer function:

1

---------------------

s^3 + 3 s^2 + 3 s + 1

>> pole(G1)

ans =

3
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-1.0000

-1.0000 + 0.0000i

-1.0000 - 0.0000i

>> G2 = zpk(1/(s+1)^3)

Zero/pole/gain:

1

-------

(s+1)^3

>> pole(G2)

ans =

-1.0000

-1.0000 + 0.0000i

-1.0000 - 0.0000i

>> G3 = 1/(s^3+2.99*s^2+3*s+1);

>> pole(G3)

ans =

-1.0888 + 0.2131i

-1.0888 - 0.2131i

-0.8124

>> G4 = 1/(s+0.99)^3;

>> pole(G4)

ans =

-0.9900 + 0.0000i

-0.9900 - 0.0000i

-0.9900

We see that the same small modification in a parameter, causes larger

changes in the dynamics when the system is represented as G3. The transfer

function format of G4 (three poles in the same spot as for G2), which can
be kept with the zpk command, is in general better numerically compared

to the format in which G3 is represented (the same form as the command
tf gives).

1.11 >> Wo = obsv(A,C)

ans =

3 4

-3 -4

>> rank(Wo)

ans =

4
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1

>> rank(ctrb(A,B))

ans =

1

Since neither the observability matrix nor the controllability matrix has

full rank, the system is neither observable nor controllable. It can be seen

directly from the state equations, where we have two states that are com-

pletely discoupled from each other and have the same eigenvalue. This

means that evolution of the states will look exactly the same for any control

signal u(t) (assuming that the initial state is at the origin). Therefore we
will never be able to control these states arbitrarily. We will only be able

to control them along some controllable subspace. The same goes for the

observability.

1.12 The transfer function for the mass-spring system will be

>> zpk(ss(A,B,C,D))

Zero/pole/gain:

2

-----------

(s^2 + 20)

The transfer function of a PID controller is

R = K (sTi + 1+ s
2TdTi)

sTi

and the closed loop transfer function is

Gcl(s) =
R(s)P(s)
1+ R(s)P(s) =

2K (s2Td + s+ 1/Ti)
s3 + s22KTd + s(20 + 2K ) + 2K/Ti

The closed loop characteristic equation is then

s3 + s2(2KTd) + s(20+ 2K ) + 2K/Ti = 0

Identify the coefficients and solve for K , Ti and Td as functions of ω and ζ :

K = 0.5(ω 2 + 2ζ ω 2 − 20)

Ti =
2K

ω 3

Td =
2ζ ω +ω

2K

The closed loop system is then

>> G_cl = feedback(R*P,1);

>> step(G_cl)
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Solutions to Exercise 1

The specification is met for many different choices of ω and ζ . One choice
can be ω = 6 and ζ = 0.7.

1.13 >> s = tf(’s’);

>> P = (3-s)/((s+1)*(s+2));

>> [A,B,C,D] = ssdata(P);

>> rank(ctrb(A,B))

ans =

2

>> p = [1 5.6 16];

>> L = place(A,B,roots(p));

The system is controllable, since the controllability matrix has full rank.

With the control law u(t) = −Lx+r, the closed loop system get the following
appearance

>> A_cl = A-B*L;

>> B_cl = B;

>> C_cl = C;

>> D_cl = 0;

>> G_cl = ss(A_cl,B_cl,C_cl,D_cl);

>> step(G_cl)

>> dcgain(G_cl)

ans =

0.1875

The system is non-minimum phase, which we can see directly since the

process has a zero in the right half plane.
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Solutions to Exercise 2. System

Representations and Stability

2.1 A state-space representation of the system is given by

[
ẋ1

ẋ2

]

=
[−2 1

0 −3

] [
x1

x2

]

+
[
1 0

1 2

] [
u1

u2

]





y1

y2

y3



 =





1 1

2 0

0 2





[
x1

x2

]

+





0 0

1 0

0 1





[
u1

u2

]

2.2 Laplace transformation of the differential equation gives

Y(s) = (b11s+ b12)
(s2 + a1s+ a2)

U1(s) +
(b21s+ b22)
(s2 + a1s+ a2)

U2(s)

The transfer matrix becomes

(
b11s+b12
s2+a1s+a2

b21s+b22
s2+a1s+a2

)

2.3

a. The equation can be written as

y = � ∗ u (2.1)

where �(t) = te−2t, t ≥ 0. Taking the Laplace transform of (2.1) gives with
u = r − y

Y(s) = 1

(s+ 2)2 (R(s) − Y(s))

Y(s) = 1

s2 + 4s+ 5R(s)

b. The transfer function has poles in

s1 = −2+ i
s2 = −2− i

Since all poles have negative part the system is input-output stable.

Another way of checking stability of a second order system with character-

istic equation s2 + a1s+ a2 is that a1, a2 > 0.

c. Since the system is stable, the L2-gain is given by the supremum of the

transfer function gain, so we want to find the peak of the Bode amplitude

plot.
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Figure 2.1 Bode diagram for Problem 2.3(c).

>> s = tf(’s’);

>> G = 1 / (s^2 + 4*s + 5);

>> bode(G)

Alternatively, one can find the frequency that maximizes the gain by the

following reasoning: Since it is a second order system, it can be written as

Gc(s) =
K

s2 + 2ζ ω s+ω 2

In our case ζ = 2/
√
5 ( 0.9. This means that the system is well damped

and that it does not have a resonance peak in the gain curve. Since the

gain is decreasing with frequency, the maximum gain can thus be found at

ω = 0.

pGc(i ⋅ 0)p =
1

5

2.4
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a.

S(s) = 1

1+ CP =
s3 + 2s2 + s

s3 + 2s2 + 2.4s+ 1.4 =

= (s+ 1)(s2 + s)
(s+ 1)(s2 + s+ 1.4) =

s2 + s
s2 + s+ 1.4

Remark: Notice that we have a 3rd order system (with a 1st order controller
and 2nd order plant), but the transfer functions S(s) is only of 2nd order!
Looking at the block-diagram of the system one can clearly see the pole–zero

cancellation of the term (s+1) for P⋅C. These kind of pole-zero cancellations
imply loss of either observability or loss of controllability, which will be

studied later in the course.

T(s) = CP

1+ CP =
1.4(s+ 1)

s3 + 2s2 + 2.4s+ 1.4 =
1.4

s2 + s+ 1.4

Remark: Also for T there has been a pole-zero cancellation of (s+ 1), but a
corresponding cancellation does not appear in for instance Gd−>z = P

1+PC .

The transfer function from n to z is T(s) (the minus sign can be ignored
since we could just as well say that the unknown noise is given by −n). This
means that the reference and the measurement noise have the same effect

on the output.

b. We know that S(s) is the transfer function from load disturbance to output.
Since the control system should remove the effects of load disturbances,

which often are of low frequency character, it would seem reasonable if the

curve representing S(s) decreases as we move to the left. This corresponds
to the upper curve.

We could also look at the function S(s) that we just determined. We see
that

lim
s→0
S(s) = 0

Comparing with the upper curve, which has a gain that goes to zero for low

frequencies, we conclude that this represents the sensitivity function.

c. In order to have good tracking of the reference value, we want the gain

from reference to output to be close to one. Looking at the gain curve of the

complimentary transfer function T we see that for ω < 1, we have T ( 1,
resulting in good tracking of the reference value.

Additional comments: At the same time, we want to be insensitive to

process noise and measurement noise, i.e. we want the gain to be as small

as possible for these two signals.

The transfer function from process noise to output is S, while T is the

transfer function of both reference values and measurement noise to the

output. S and T can not be small at the same frequencies, due to the fact

that

S(s) + T(s) = 1

1+ C(s)P(s) +
C(s)P(s)
1+ C(s)P(s) = 1

9
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Thus, we need to think about the frequency character of these signals,

and compare with the shapes of the transfer functions: Process noise and

reference signals are often of low frequency, so we want to have S ( 0
and T ( 1 at low frequencies. Measurement noise is most often of high
frequency, so we want to have T ( 0 at high frequencies.

d. At ω > 1 T is small, resulting in good attenuation of measurement noise.
(Do you see how the “speed” of control relates to the impact of measurement
noise?)

2.5

a. The sensitivity function is given by S = 1
1+PC , so S is small at frequencies

where PC is large. The stationary gain of P is finite. C2 and C3 both have

integral action and infinite stationary gain. Thus, for these controllers, S

will go to zero asω → 0. C1, being a pure P-controller, has a finite stationary
gain. S will then also have a finite stationary gain.

C2 and C3 are PI-controllers, but C3 has a delay which will introduce extra

phase loss. This decreases the phase margin and therefore introduces a

higher sensitivity peak. Thus, we have: C1 → A, C2 → C, and C3 → B.

b. Since controller C1 does not have integral action, we will get a stationary

error in the response to a constant load disturbance, d. The response using

the delayed controller C3 will be less damped than the response using the

PI-controller because of the smaller phase margin, C2. This gives: C1 → I I,
C2 → I, and C3 → I I I.

2.6

a.

y= α h2, f = β (h1 − h2)

ḣ1 =
1

A1
(u1 − f ), ḣ2 =

1

A2
(u2 + f − y)

ḣ =
(
− 1
A1

β 1
A1

β

1
A2

β − 1
A2
(β +α )

)

h+
(
1
A1

0

0 1
A2

)

u

y = (0 α ) h

b.

G(s) = 1

s2 + (2β +α )s+α β
(α β α (s+ β ) )

c. Since the system is stable, the L2-gain can be computed in Matlab as:

>> s = tf(’s’);

>> G = 1/(s^2+3*s+1)*[1 s+1];

>> P = norm(G, inf)

The L2-gain is
√
2.
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d. Short explanation: The gain definition uses 2-norm to measure signals. The

error of thinking is a result of forgetting this and instead assuming that

the size of the input is equal to the sum of the inflows.

Longer explanation: The L2-gain is the largest output signal that can be

achieved (in 2-norm) by an input signal which is not larger than one (in 2-
norm). More formally, if we let the vector u = (u1 u2 )T , the gain is given
by

qGq∞ = sup
u ,=0

qGuq2
quq2

= sup
quq2≤1

qGuq2 =
√
2.

Obviously, the amount of water going into the tank is given by u1 + u2.
But the gain definition does not mention the sum of the elements of u. It

does however say that 1 ≥ pup =
√

u21 + u22. If, e.g., we let u1 = u2 =
√
2/2,

then the maximum output is achieved, while pup = 1. But still, the output
is equal to the sum of the inputs.
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Solutions to Exercise 3. Disturbance Models

and Robustness

3.1 Let

G(s) = 1

s+ 1.

a. The closed loop is guaranteed to be stable accoring to the small gain theorem

if ppGpp ⋅ pp∆pp < 1. We see that ppGpp = 1 (use norm(G,inf) or look at the Bode

Plot), so the system is guaranteed to be stable if pp∆pp < 1.

b. The loop gain is given by

L(s) = G(s)K = K

s+ 1,

and the sensitivity function by

S = 1

1+ L =
1

1+ K
s+1

= s+ 1
s+ 1+ K .

We see that there is one closed loop pole in s = −(1+ K ), so the system is
stable exactly when K > −1. We can compare this to the result in a, which
guarantees that the system is stable when pK p < 1.
The different results arise from the fact that the small gain theorem is con-

servative in nature, i.e. it gives a sufficient condition on stability, but that

condition may not be necessary. The main reason of such a conservatism, is

that there is no a priori assumptions on ∆. ∆ in a can be a transfer func-
tion of an arbitary order, not just an unknown scalar as in b. Looking at

the closed loop poles, on the other hand, shows exactly when the system is

stable.

3.2 a. Block diagrams of the original and the rewritten closed-loop system are

shown in Figure 3.1. We have

C(s) = 2s+ 2
s

P(s) = 1

(s+ 1)2 W(s) = s

s+ 2

Gvn(s) = −
C(s)W(s)
1+ P(s)C(s) = −

2s4 + 6s3 + 6s2 + 2s
s4 + 4s3 + 7s2 + 8s+ 4 = −

2s3 + 4s2 + 2s
s3 + 3s2 + 4s+ 4

Matlab commands:

>> s = tf(’s’);

>> C = 2*(s+1)/s

>> P = 1/(s+1)^2

>> W = s/(s+2);

>> Gvn = -(C(s)W(s))/(1+P(s)C(s));

b. The L2-gain of Gvn is equal to 2.63. This corresponds to the peak magnitude

in the Bode Diagram of Figure 3.2.
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c. The small gain theorem shows stability for all perturbations, ∆, satisfying

pp∆pp ⋅ ppGvnpp < 1

The closed loop system is therefore stable for all perturbations ∆ with

q∆q∞ < 1/qGvnq∞ = 0.38

Matlab commands:

>> norm(Gvn, inf)

>> 1/ans

d. Process models are often better (that is, they match the real process more
closely) in the low frequency range. As frequency increases there is usually
excitation of higher-order dynamics and non-linearities in the real process,

which is not covered by the model.

Since we know that there is more uncertainty for high frequencies, this can

be used to get some structure on the uncertainty block. This structure is

given by the extra factor (such factors are usually called weighting func-
tions), which effectively makes the uncertainty smaller for low frequencies
(approximately when ω < 2). Without this factor, the analysis would as-
sume equal uncertainty for all frequencies, yielding a lower bound on the

L2-gain of ∆. In other words, the system would appear less robust.

3.3 a. Matlab commands:

>> s = tf(’s’);

>> P = 1/(s+2);

>> C = (0.81*s+3.6)/(0.225*s)

C P

C(s) P(s)

v
∆
n

+

W(s)

−1

v
∆

n

Gvn(s)

Figure 3.1 Systems for Problem 3.2.
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Figure 3.2 Bode magnitude diagram for Gvn(s).

>> G = feedback(C*P,1);

>> pole(G)

ans =

-2.8000 + 2.8566i

-2.8000 - 2.8566i

b. The transfer functions are

Z = 1

1+ CPV +
P

1+ CPD −
CP

1+ CPN +
CP

1+ CPR

Z = SV + SPD + T(R − N)

Z(s) = ( S(s) S(s)P(s) T(s) −T(s) )








V (s)
D(s)
R(s)
N(s)








Matlab commands:

>> T = feedback(C*P,1);

>> S = 1-T;

>> bode(T)

>> hold on

>> bode(S)

>> S

Transfer function:

s^2 + 2 s

----------------

s^2 + 5.6 s + 16
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>> T

Transfer function:

3.6 s + 16

----------------

s^2 + 5.6 s + 16
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Figure 3.3 Bode diagrams of S and T in Problem 3.3.

c. In the bode plot of the sensitivity function, we see that qS(i0.5)q = −23.8 dB =
10(−23.8/20) = 0.0646
Matlab commands:

>> abs(freqresp(S,0.5))

ans =

0.0644

d. We convert ω = 2π 50 Hz = 314.16 rad/s. In the bode plot of the com-
plementary sensitivity function, we see that qT(i314.16)q = −38.8 dB =
10(−38.8/20) = 0.0115
We have very good attenuation of both load disturbances and measurement

noise.

3.4 a. The transfer function from n to v as seen in Figure 3.4 can be written as

H = −PCW
1+PC according to the following Matlab commands:

>> s = tf(’s’);

>> W = s/(s+1);

>> P = 1/(s+2);

>> C = (0.81*s+3.6)/(0.225*s);

>> H = -feedback(P*C,1)*W;

>> norm(H,inf)

ans =
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H(s)

∆
nv

Figure 3.4 Rewritten closed-loop system for Problem 3.4(a).
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Figure 3.5 Nyquist plot of −H(s) in problem 3.4(b).

1.0065

>> lower_bound = 1/ans

ans =

0.9935

b. We know that ∆(s) = δ , a real number. Looking at Figure 3.4 we see that
we can apply the Nyquist Criterion to analyze the closed loop stability.

From the Nyquist Plot of −H(s) in Figure 3.5, we see that the closed loop
is stable for all δ ≥ 0. For negative δ :s, the closed loop will become unstable
once the bubble formed by the Nyquist Curve has grown so large that −1
is no longer on its outside. We find this value to be −δ = 1.0119 from the
gain margin of −H . Thus, the system is stable when δ > −1.0119.
The small gain theorem is easy to use, but it can be conservative, since there

is no prior assumptions on structure of uncertainty. With more information

about the uncertainty, the bounds can be less conservative and we can allow

all positive values of δ as well.

Matlab code:

>> nyquist(-H)

>> allmargin(H)

ans =
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GainMargin: 1.0119

GMFrequency: 2.3256

PhaseMargin: [-4.4628 -18.9141]

PMFrequency: [2.5211 3.1922]

DelayMargin: [2.4614 1.8649]

DMFrequency: [2.5211 3.1922]

Stable: 1

c. In the referenced figure the uncertainty is added to the process. This is

called an additive uncertainty, ie. P+∆. Here, the uncertainty is multiplied
to the output signal, giving a multiplicative uncertainty, ie. P(1+∆). In this
type of model, the uncertainty is proportional to the process gain.

3.5 Φu(ω ) is an even, scalar, non-negative function. Thus we can divide it into

Φu(ω ) = G(iω )G(−iω )Φ e(ω )

where G(s) has its poles and zeroes in the left half-plane and Φ e = 1 (white
noise).

a.

Φu(ω ) =
a2

ω 2 + a2Φ e(ω ) =
a

iω + pap ⋅
a

−iω + pap
So the linear filter is

G(s) = a

s+ pap

b. In the same way, we get

Φu(ω ) =
a2b2

(ω 2 + a2)(ω 2 + b2)Φ e(ω )

= ab

(iω + pap)(iω + pbp) ⋅
ab

(−iω + pap)(−iω + pbp)

[ G(s) = ab

(s+ pap)(s + pbp)

3.6 a. To make a state-space description, we let x1 = z, x2 = ż =[

ẋ1 = x2,

ẋ2 =
1

m
(u− k1x2 − v).

In matrix form:

ẋ =
(
0 1

0 − k1
m

)

x +
(
0
1
m

)

u+
(
0

− 1
m

)

v,

z = ( 1 0 ) x.
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Solutions to Exercise 3

b. We want to find a filter H such that

Φv(ω ) = pH(iω )p2Φ e(ω )

Thus H(s) =
√
k0

s+pap , which is equivalent to v̇+ papv =
√
k0 e.

Adding a new state x3 = v to the state-space description, gives

ẋ3 = −papx3 +
√

k0e

and

ẋ =





0 1 0

0 − k1
m

− 1
m

0 0 −pap



 x +





0
1
m

0



u+





0

0√
k0



 e

z = ( 1 0 0 ) x, Φ e(ω ) = 1

3.7

a. With {A, B,C,N} according to the solution of problem 3.6, we have

ẋ = Ax + Bu+ Ne
y = Cx + n

where n has spectral density Φn " 0.1.

b. A noise signal with the specified spectral density is given by the output of

a linear system with white noise input that has spectral density Φwn = 0.1.
The transfer function of the system is

Gn(s) =
s

s+ pbp =
s+ pbp − pbp
s+ pbp = 1− pbp

s+ pbp

In state-space form this can be expressed as

ẋ4 = −pbpx4 + pbpwn
n = −x4 +wn

Combining the noise model with our original system gives the expanded

state-space description:

ẋ =
(

A 0

0 −pbp

)

x +
(

B

0

)

u+
(

N 0

0 pbp

)(

e

wn

)

y=
(

C −1
)

x +wn, Φωn = 0.1

Note that the disturbance can be described using a transfer function and

white noise of any spectral density. For instance, it is often convenient to

assume white noise with a spectral density of 1. In this case, the transfer

function of the system would be

Gn(s) =
√
0.1s

s+ pbp
The expanded state space description would then need to be adjusted to

account for this.
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c. Now, the transfer function of the noise model is Gn(s) = 1
s+pbp . In state-space

form, this is

ẋ4 + pbpx4 = wn.
The expanded system becomes

ẋ =
(
A 0

0 −pbp

)

x +
(
B

0

)

u+
(
N 0

0 1

)(
e

wn

)

y= ( C 1 ) x, Φωn = 0.1

As in subproblem b, the disturbance can be described using a transfer func-

tion and white noise of any spectral density. Assuming white noise with a

spectral density of 1, the transfer function of the system would be

Gn(s) =
√
0.1

s+ pbp

3.8

a. The spectrum of the wind is of low-pass character with cut-off frequency α .
When α is increased, v(t) becomes more similar to white noise, i.e. there
is more high-frequency content in the signal. Thus, higher α means more
wind gusts.

Alternatively, one could look at the covariance function:

Rv(τ ) =
1

2π

∫ ∞

−∞
Φv(ω )eiωτdω = e−α pτ p, α > 0.

The covariance function has a sharper peak when α is large. That is, the
correlation between v(t) and v(t+τ ) is small, meaning that the wind changes
more often.

b. Using spectral factorization, the influence of wind can be described as white

noise e(t) with intensity 1 filtered through a linear system with transfer
function

H(s) =
√

2/α
1+ s/α

Thus Y(s) = G(s) KH(s)E(s), where

G(s) KH(s) = K
√
2α

(α + s)(s2 + s+ 1) =
K
√
2α

s3 + (1+α )s2 + (1+α )s+α
.

The variance of the output is

Var(y) = 1

2π

∫ ∞

−∞
pG(iω )KH(iω )p2dω

= 1

2π

∫ ∞

−∞

∣
∣
∣
∣
∣

K
√
2α

(iω )3 + (1+α )(iω )2 + (1+α )iω +α

∣
∣
∣
∣
∣

2

dω

= K
2(1+α )

1+α +α 2
.
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Apparently, the variance increases with wind strength, which is no surprise.

However, the variance decreases with the amount of wind gusts. The reason

is that a low amount of gusts means that there are longer periods of almost

constant wind force, where the swing is displaced far from the origin. A

lot of gusts, on the other hand, results in the wind force changing sign

frequently, more or less cancelling its own effect a lot of the time.

3.9

a. (i)

(ii)

v(t) is a unit disturbance

b. (i)

ẋ =

A
︷ ︸︸ ︷




0 1 0

0 −1 1

0 0 0



 x +

B
︷ ︸︸ ︷




0

1

0



u+





0

0

1



 v

y = ( 1 0 0 )
︸ ︷︷ ︸

C

x.

(ii)
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ẋ =

A
︷ ︸︸ ︷




0 1 0

0 −1 0

0 0 0



 x +

B
︷ ︸︸ ︷




0

1

0



u+





0

0

1



 v

y = (1 0 1 )
︸ ︷︷ ︸

C

x.

c. (i) w(t) could be an offset current on the input to the motor, and/or a step
disturbance in the load.

(ii) In this case w(t) is a measurement disturbance, i.e. an additive error
(constant) in the angle measurement.
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Solutions to Exercise 4. Loop Shaping

4.1 This is a preparatory exercise for the practical session. This is not a complete

solution, just some helpful tips.

a. Since we cannot change the phase of the system using a P-controller, higher

gain will lead to lower phase margin (as the phase approaches -180 for high
frequencies).
Higher gain will also decrease stationary errors, but increase the maxi-
mum peak in the sensitivity function (making the system very sensitive to
measurement noise).

>> figure(1)

>> step(P/(1+0.1*P),P/(1+1*P),P/(1+5*P),P/(1+10*P));

>> title(’Step responses’)

>> figure(2)

>> bode(P/(1+0.1*P),P/(1+1*P),P/(1+5*P),P/(1+10*P));

>> title(’Transfer functions from load disturbance’);

>> figure(3)

>> bode(1/(1+0.1*P),1/(1+1*P),1/(1+5*P),1/(1+10*P));

>> title(’Sensitivity functions’);

b. It is not possible to achieve good behavior with a PI-controller, but try to
get it as good as possible:

>> figure(1)

>> K= ... ; Ti = ... ;

>> C = tf(K*[1 1/Ti],[1 0]);

>> step(P/(1+C*P);

4.2 This is a preparatory exercise for the practical session. This is not a complete

solution, just some helpful tips.

a. From the basic course: We calculate the gain qC(iω )q = 1/
√

ω 2/a2 + 1 and
use log scale. Then

log pC(iω )p = −0.5 log(ω 2/a2 + 1) (
{

0 ω << a
log(a) − log(ω ) ω >> a

and the two lines meet where ω = a (the breakpoint). Also, the phase is at
−45○ at ω = a, starts at 0○ and ends at −90○.
We can add a pole to the controller if we want to decrease gain for higher

frequencies, e.g. to limit the cut-off frequency ω c. It is often the case that
we want to increase the gain at low frequencies, but keep it low at high

frequencies. We can then use a controller of the type C(s) = K/(s/a + 1)
with a pole to limit high frequency gain and a static gain larger than one

to increase the low frequency gain.

>> C01 = tf([1],[1/0.1 1]);

>> C1 = tf([1],[1/1 1]);

>> C5 = tf([1],[1/5 1]);

>> bode(C01, C1, C5);
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b. The same as in (a), except that a zero breaks the gain up at b.

log pC(iω )p = 0.5 log(ω 2/b2 + 1) (
{

0 ω << b
log(ω ) − log(b) ω >> b

We can add a zero to the controller to increase gain at high frequencies in

order to increase the cut-off frequency ω c. Also, since the phase of the zero
goes to +90○, we increase the phase margin by adding a zero.

4.3 This is a preparatory exercise for the practical session. This is not a complete

solution, just some helpful tips.

The following Matlab code shows some relevant plots for a design:

>> s = tf(’s’);

>> C = ...; % Make up your own design

>> figure(1)

>> margin(C*P) % Plot open loop frequency response

>> figure(2)

>> % Plot step responses from load disturbance and reference signal to output signal y.

>> subplot(2,1,1)

>> step(P/(1+P*C));

>> title(’Load step response’);

>>

>> subplot(2,1,2)

>> step(P*C/(1+P*C))

>> title(’Reference step response’);

4.4 This is a preparatory exercise for the practical session. This is not a complete

solution, just some helpful tips.

a. The ideal frequency response is Gyr " 1. Then we would always have y = r.
However, achieving something close to this would require very aggressive

control, so that is not a good idea. (The controller would need to invert the
process dynamics, resulting in second-order derivative action on the control

error).

b. We want to shape F(s) so that the constraints on the control signal are re-
spected, for a step change in the reference. This may be achieved by reducing

the bandwidth.

4.5 Plot the Bode diagram for Go(s) in Matlab or use the command

>> [Gm,Pm,Wcg,Wcp] = margin(G_o)

to calculate the cut-off frequency ω c = 0.73 and the phase margin φm =
20.7○. To reach the aim of a φm,desired = 50○, the controller has to increase
the phase at the cut-off frequency with approx 30○. We use the lead com-
pensation given by

Gk(s) = KN
s+ b
s+ bN
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Figure 4.1 To the left: Plot of φδ against b. To the right: Step response from the original

system and the compensated system in Problem 4.5.

with the phase

φ = arctan
( s

b

)

− arctan
( s

bN

)

The maximum of the phase compensation for the compensator is at the fre-

quency b
√
N , which preferably should coincide with ω c, hence N = (ω c/b)2.

Plot the phase addition of the compensator given by

φδ = arctan
(ω c
b

)

− arctan
(
b

ω c

)

and determine that the factor b ( 0.4 for φδ = 30○ (see Figure 4.1). To
keep the cut-off frequency invariant the gain of the compensator has to be

calculated from pGk(iω c)Go(iω c)p = K
√
N ⋅ 1 gives K = 1√

N
= 0.55. Plot

the step response by the commands:

>> G_l=tf(K*N*[1 b],[1 b*N])

>> step(G_o*G_l/(1+(G_o*G_l))

The stationary error:

E(s) = 1

1+ GkGo
U(s) = s(s+ 0.5)(s+ 3)(s+ bN)

s(s+ 0.5)(s+ 3)(s+ bN) + 2KN(s+ b)U(s)

The Laplace transform of a ramp function is U(s) = 1/s2 and the error is

lim
s→0
sE(s) = 1.5

2K
= 1.37

which fulfills the specification.

4.6 a. The transfer function from d to y is given by

Gyd(s) =
P

1+ PC
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For frequencies ω ≤ 0.5 (approximately), it can be seen in the Bode diagram
that both pP(iω )p ≫ 1 and pP(iω )C(iω )p ≫ 1. Therefore Gyd(s) ( 1

C
, and

pC(iω )p becomes larger than 1 for frequencies ω ≤ 0.02.
The magnitude of Gyd(s) is thus smaller than 1 in a frequency range of
approximately [0, 0.02], thus ω b = 0.02 rad/s.
This can also be seen as the frequency point where pPCp becomes larger
than pPp in the bode diagram.

b. To increase ω b, we would like to increase the gain of C(iω ) for frequencies
ω > 0.02. This is done by moving the zero in C(s) (the break-point in the
Bode diagram) from 0.02 to some higher frequency.
Choose e.g. a = 0.1. Motivation:

• As Gyd(s) ( 1
C
, and pC(iω )p now becomes larger than 1 for frequencies

ω ≤ 0.1, ω b has been increased to about 0.1.
• The cut-off frequency for a = 0.02 is ω c ( 0.8. As this frequency is
higher than the new break-point 0.1, C(iω c) ( 1 still holds [ the

cut-off frequency stays the same.
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Solutions to Exercise 5. Multivariable Zeros,

Singular Values and

Controllability/Observability

5.1 a. In Matlab, we may derive the controllability- and observability matrices

using

>> Wc = ctrb(A,B)

Wc =

1 -1 1

1 -2 4

0 0 0

>> rank(Wc)

ans =

2

>> Wo = obsv(A,C)

Wo =

1 0 1

-1 0 -3

1 0 9

>> rank(Wo)

ans =

2

Since the system is on diagonal form we can see, using theorem 3.1 in the

course book (Glad&Ljung), that the uncontrollable mode corresponds to
the third state (as that row in the B matrix is 0). By theorem 3.2 in the
course book, the unobservable mode is determined to be the second state in

a similar fashion (the column of C equal to 0).
The system is illustrated in the block diagram in Figure 5.1. We can see that

the state x2 will not influence y, and is therefore not observable. We can

also see that the control signal u will not affect the state x3, and therefore

this state is not controllable.

b. The transfer function is simply

G(s) = C(sI − A)−1B = 1

s+ 1
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u

y

x1

x2

x3

1
s+1

1
s+2

1
s+3

+

0

Figure 5.1

and the system can thus be represented as a minimal realization in state

space form of order 1. Note that this corresponds to the first subsystem in

Figure 5.1 which is both observable and controllable.

If we are only interested in the relationship between u and y, we can use the

resulting first order transfer function G(s). However, the original third or-
der state space model contains additional information, as seen in Figure 5.1.

The second and third subsystems in this model may represent physical en-

tities of the plant that must be taken into account. If we need to influence

x3 or monitor x2, additional sensors or actuators are needed.

5.2

a. First of all, define the system in Matlab

>> A = [-0.21 0.2;0.2 -0.21];

>> B = 0.01*eye(2);

>> C = eye(2);

>> D = 0;

>> sys = ss(A,B,C,D);

The controllability Gramian is calculated using

>> W = gram(sys,’c’)

W =

0.0026 0.0024

0.0024 0.0026

b. Recall the formula from the lecture notes:

∫ ∞

0

u2(s)ds ≥ xT(∞)W−1x(∞)

Therefore to identify the hardest to control state direction, we calculate the

eigenvalues and the eigenvectors of W−1 :
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[T L] = eig(inv(W))

T =

-0.7071 -0.7071

-0.7071 0.7071

L =

1.0e+03 *

0.2000 0

0 8.2000

Apparently one eigenvalue of the inverse of the Gramian is almost 40 times

larger than the other. Hence one state direction is poorly controllable.

Inspection of the corresponding eigenvectors, i.e. the columns of T, shows

that the small eigenvalue correponds to a state direction where both temper-

atures move in the same way, while the poorly controllable state direction

correponds to temperatures moving in opposite directions.

5.3 a. Continuing the code we get

>> syms c1 c2 c3 c4 c5

>> C = [c1 c2 c3 c4 c5];

>> Wo = [C;C*A;C*A^2;C*A^3;C*A^4];

>> det(Wo)

ans =

0

>> rank(Wo)

ans =

4

Since the system does not have full rank (5) we see that no matter how we
choose C (when it’s a vector), the system can never be made observable.
This means that we need information from more than just one signal to

make the system observable.

b. Determine the eigenvectors of the system

>> [V,D]=eig(A)

V =

0 0.3333 0.4286 -0.0261 0.0206

0 0.6667 -0.8571 0.7973 -0.3916

1.0000 0.6667 0.2857 -0.0399 0.0196

0 0 0 0.6017 0
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0 0 0 0 0.9197

...

Rewrite the system on diagonal form using the variable change x(t) = V z(t)

ẋ(t) = V ż(t) = AV z(t) + Bu(t) [
ż(t) = V−1AV z(t) + V−1Bu(t) = Λz(t) + V−1Bu(t)
y(t) = CV z(t)

where Λ is a diagonal matrix with the eigenvalues in the diagonal. Now
that we have the system on the wanted form, we can determine if there are

any columns in CV that are zero

>> C*V

ans =

0 0.3333 0.4286 -0.0261 0.0206

0 0.6667 -0.8571 0.7973 -0.3916

The first state in z therefore corresponds to the unobservable mode. In the

original variables this is the third state:

>> V*[1;0;0;0;0]

ans =

0

0

1

0

0

So, the third state is the unobservable mode.

5.4 System A depicts the observable system. Obviously the problem is in the

pole p0 = −3. We control directly the plant P1, and we observe the output
of plant P2. It means that we observe the effect of the pole p0 = −3, but
due to pole-zero cancellation, we cannot control it.

Similarly for system B, we control directly the plant P2, and the pole p0 = −3
is controllable, but the effect of that pole is cancelled by the zero in P1 and

we do not observe it. Hence the whole system is not observable.

5.5 a. The largest subdeterminant of the transfer function matrix is

(s+ 1)
(s+ 2)2 +

1

(s+ 2)2 =
1

(s+ 2)

Furthermore, the matrix elements in themselves are subdeterminants. The

pole polynomial, i.e. the least common denominator of all subdeterminants,

is then

p(s) = (s+ 2)
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Figure 5.2

This means that the system has a pole in s = −2. The system can thus be
realized on state space form of order 1.

The largest possible subdeterminant was

1

(s+ 2)

The zero polynomial is thus just a constant and the system does therefore

not have any zeros.

Note, that we basically calculated the determinant of the transfer matrix

det(G(s)) and took its denominator as the pole polynomial and numerator
as the zero polynomial.

b.

G(s) =
(

1
s+2 − 1

s+2
1
s+2

s+1
s+2

)

=
(

1
s+2 − 1

s+2
1
s+2 1− 1

s+2

)

= 1

s+ 2

(
1 −1
1 −1

)

+
(
0 0

0 1

)

= 1

s+ 2

(
1

1

)

( 1 −1 ) +
(
0 0

0 1

)

A state-space realization can now be written as

dx

dt
= −2x + (1 −1 )u

y=
(
1

1

)

x +
(
0 0

0 1

)

u

c. The singular value plot (see Figure 5.2) is drawn using the command sigma.

The L2 gain ppGpp∞ is the largest singular value of G(iω ) across all frequen-
cies ω , from the figure we can see that ppGpp∞ = 1 in this case. We also see
that the largest gain of this system is achieved at high frequencies.
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5.6 a. To determine the frequency response at a certain frequency ω , it’s handy
to use the Matlab command freqresp. To calculate the singular values

together with the U and V matrices, use the function svd. The Matlab code

can look like this:

>> s = tf(’s’);

>> G = [1 1/s];

>> [U,S,V] = svd(freqresp(G,1))

U =

1

S =

1.4142 0

V =

0.7071 0 + 0.7071i

0 + 0.7071i 0.7071

The maximum gain, corresponding to the highest singular value, is ob-

tained as the first element in S and is σ = 1.4142. The first column of V ,
v1 = (0.7071 0.7071i)T , corresponds to the input direction that gives the
maximum gain σ . Since the system has two inputs and only one output,
there will always be an input direction that gives zero output (where the
inputs cancel each other). The second column of V gives us this direction,
v2 = (0.7071i 07071)T .

b. If the input signal is a sinusoid with frequency ω = 1 rad/s, the complex
numbers will correspond to a phase shift of this sinusoid. The input direc-

tion giving the highest gain is v1 = [0.7071 0.7071i]T , meaning that the
second input has 90○ of phase lead before the first.

The first input comes through the system unchanged; the second goes through

an integrator, causing a phase lag of 90○. Thus the input direction v1 =
[0.7071 0.7071i]T will cause the two sinusoids that sum up at the output
to be in phase; resulting in maximal gain.

If we instead use the lowest gain input direction v2 = [0.7071i 0.7071]T ,
the second input will have a phase lag of 90○, causing a 180○ phase lag at
the output. The two signals will cancel at the output, resulting in minimal

gain.

5.7 a. >> s = tf(’s’);

>> G = 1/(75*s+1)*[87.8 -86.4;108.2 -109.6];

>> sigma(G)

>> grid

See Figure 5.3 for the Matlab plot.

b. Calculate the frequency responses at the given frequencies
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Figure 5.3 Singular value plot for Problem 5.7

>> Gfr1 = freqresp(G,0)

Gfr1 =

87.8000 -86.4000

108.2000 -109.6000

>> Gfr2 = freqresp(G,0.1)

Gfr2 =

1.5336-11.5022i -1.5092+11.3188i

1.8900-14.1747i -1.9144+14.3581i

The gain of a transfer matrix at a particular frequency, ω , is computed as

sup
d ,=0

qG(iω )dq2
qdq2

. If we choose a particular direction d0 then the supremum

disappears and the gain is given by
qG(iω )d0q2
qd0q2

.
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Thus the gains are given by

qG(0)d1q2
qd1q2

= q [−5.1 −8.6 ]T q2
q [0.6713 0.7412 ]T q2

=
√

(−5.1)2 + (−8.6)2
√

(0.6713)2 + (0.7412)2
= 10.0
1

qG(0)d2q2
qd2q2

= 139.3

qG(0.1i)d1q2
qd1q2

= 1.3

qG(0.1i)d2q2
qd2q2

= 18.4

They can also be calculated in Matlab using

>> d1 = [0.6713;0.7412];

>> d2 = [1;0];

>> norm(Gfr1*d1),norm(Gfr1*d2),norm(Gfr2*d1),norm(Gfr2*d2)

ans =

9.9990

ans =

139.3416

ans =

1.3215

ans =

18.4159

c. Using Matlab:

>> [U,S,V] = svd(Gfr1)

U =

-0.6246 -0.7809

-0.7809 0.6246

S =

197.2087 0

0 1.3914

V =

-0.7066 -0.7077

0.7077 -0.7066
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The maximum gain is σ = 197.2 and the minimum gain is σ = 1.39. The in-
put direction associated with the maximum gain is v1 = [−0.7066 0.7077]T .
The input direction giving the least gain is v2 = [−0.7077 − 0.7066]T .
These directions are constant for all frequencies. The reason is that the

denominators of all matrix elements are the same, which gives

G(iω ) = 1

75iω + 1G(0).

Let G(0) = UΣV ∗. We then have G(iω ) = U
(

1

75iω + 1Σ

)

V ∗, and we can

see that ω will only change the singular value matrix Σ, not the direction
matrices U and V .
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Solutions to Exercise 6. Fundamental

Limitations

6.1 a. The transfer function of the process P(s) is given by

P(s) = s

s2 + 2s+ 1

and the zero is located in the origin.

b. The sensitivity function is given by S(s) = 1

1+ P(s)C(s) and it will be
one at low frequencies since P(0) = 0. Note that you can not cancel the
process zero in s = 0 with your controller since you then would not have an
asymptotically stable system.

c. The error e(t) is given by r(t)−θ (t) and the static error is then given by the
final value theorem, which can be used if all poles of sE(s) have a strictly
negative real-part.

lim
t→∞
e(t) = lim

s→0
sE(s)

Here the transfer function from r to e is given by:

Gre(s) =
1

1+ P(s)C(s)

The following result is obtained if r(t) is assumed to be a step, R(s) = a/s.

lim
s→0
sE(s) = lim

s→0
sGre(s)R(s) = a

since P(0) = 0 (and thereby Gre(0) = 1). This means that the ball will not
follow a reference trajectory that changes step-wise; there will be a static

error equal to a. Hence, no matter the reference value, the ball will end up

in the bottom of the cylinder.

An alternative explanation is that the sensitivity function S is 1 at s = 0,
therefore

T(0) = P(0)C(0)
1+ P(0)C(0) = 1− S(0) = 0

and then y(t) does not follow r(t).

d. The transfer function for the open loop with a PI controller is given by:

P(s)C(s) = s

s2 + 2s+ 1K
s+ 1/Ti
s

= K s+ 1/Ti
s2 + 2s+ 1

Here the process zero is canceled by the controller.

If we would have no stationary error the control signal from a PI controller

would be constant. But if we have a constant control signal ω that would
imply that ω̇ = 0 which would give θ = 0 and we would get a stationary
error (if r(t) ,= 0). This is contradictory and therefore we must have a
stationary error. And with a PI controller a stationary error would give a

linearly increasing control signal.
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6.2 The sensitivity function is given by:

S(s) = 1

1+ P(s)C(s)
From this it follows that

S(iω ) = 1

1+ P(iω )C(iω )

a. In the case of a purely imaginary process pole in iω p we have

P(iω p) = ∞

and consequently

S(iω p) = 0
b. A measurement disturbance n with frequency ω p will have a vanishing
effect on y and e, since

S(iω p) = 0.
Note that this implies that n will have a big impact on z since z(t) = y(t) −
n(t).

c. No stabilizing controller can change the fact that S(iω p) = 0. Cancellations
of poles on the imaginary axis should always be avoided.

d. In the case of a purely imaginary process zero in iω z we have

P(iω z) = 0

and consequently

S(iω z) = 1
e. The transfer function from n to z is given by −T(s), where T is the comple-
mentary sensitivity function. Since S(iω z) = 1 and S+ T = 1 it must hold
that T(iω z) = 0, i.e. an output disturbance with frequency ω z will have no
effect on z.

6.3 a. The transfer function from n to z is given by

Gn→z(s) = −
P(s)C(s)
1+ P(s)C(s)

We want to determine C(s) such that Gn→z(s) = 5/(s + 5). This gives the
equation

− P(s)C(s)
1+ P(s)C(s) =

5

s+ 5 =[ C(s) = −
5
s+5

P(s) ⋅ (1+ 5
s+5)

Inserting P(s) = (3− s)/(s+ 1)2, we obtain

C(s) = − 5 ⋅ (s+ 1)2
(3− s)(s+ 10)

However, this is not a stabilizing controller. For example, the transfer func-

tion from n to u, Gn→u = − C(s)
1+P(s)C(s) , will be unstable because of the can-

cellation of the unstable zero in P(s).
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b. The specification

pS(iω )p ≤ 2ω√
ω 2 + 36

ω ∈ R
+

is equivalent to

sup
ω

∣
∣
∣
∣
∣

√
ω 2 + 36
2ω

S(iω )
∣
∣
∣
∣
∣
≤ 1

However, Wa(iω ) = iω+a
2iω gives pWa(iw)p =

√
ω 2+36
2ω , for a = 6 so the specifi-

cation can equivalently be written

sup
ω
pWa(iω )S(iω )p ≤ 1

There is a right half plane zero in z = 3. According to Theorem 7.4 in
[Glad&Ljung] this makes the specification impossible to satisfy unless pWa(z)p ≤
1. We see here that pWa(3)p = p3+62⋅3 p = 3

2
> 1, so the specification is impossi-

ble to satisfy for a = 6.

c. The Bode plot of P(s) is given in Figure 6.1 and the sensitivity function
when C(s) = 1 is given in Figure 6.2 together with the specification. Since
the specification 2ω√

ω 2+1 = 0 when ω = 0 the controller C(s) must contain an
integrator. To avoid instability we must also lift the phase curve through

adding a zero and decrease the gain in the open-loop, P(s)C(s). A controller
on the form

C(s) = K ⋅
s/b+ 1
s

with e.g. K = 0.17, b = 0.5 will do the job.

Hint: To plot the specification on top of the Bode plot of S the following
Matlab commands can be used:

>>[mag, fas, w] = bode(S);

>>loglog(w, 2.*w./sqrt(w.^2+1), ’r --’)

>>hold on

>>bode(S)

Bode Diagram
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Figure 6.1 Bode plot of P(s) in Problem 6.3.
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Bode Diagram
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Figure 6.2 Sensitivity function when C(s) = 1 and the specification (dashed) in Prob-
lem 6.3.
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Figure 6.3 Sensitivity function for the proposed controller and the specification (dashed)
in Problem 6.3.

6.4 The first case is impossible, because there is a time-delay of 2 seconds in

the plant, so the control signal will affect the output with this delay. Thus,

the controller would need to be non-causal to achieve the specification.

The second specification in the figure says that the gain should be below 2

(actually the requirement is closer to ( 1.6).
From theorem 7.3 in the lecture notes we see that if there is an unstable

pole p and an unstable zero z, we have the following fundamental limitation:

ppSpp∞ ≥
∣
∣
∣
∣

z+ p
z− p

∣
∣
∣
∣

We know that S+ T = 1, so in this case, we have

ppT pp∞ = ppS − 1pp∞ ≥ ppSpp∞ − 1 ≥
∣
∣
∣
∣

20+ 10
20− 10

∣
∣
∣
∣
− 1 = 2
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where the first inequality follows from the reversed triangle inequality

pppxpp − ppyppp ≤ ppx − ypp

It is also possible to get to the same conclusion without using the unstable

zero, since the existence of a fast unstable pole is enough the make the

specification impossible to achieve.

The third case is possible. If proportional control, C(s) = K is used the
closed loop transfer function becomes G(s) = K

s−3+K . For stability it is re-

quired that K > 3. The static gain is given by K
K−3 . Since it is a first order

system there will be no overshoot in the step response, which means that a

P-controller with K > 6 will fulfill the specification to stay in the interval
[0, 2].

6.5 a. Assume sup
ω
pWS(iω )S(iω )p ≤ 1 and sup

ω
pWT(iω )T(iω )p ≤ 1 are satisfied.

We know that 1 = pS(s0) + T(s0)p ≤ pS(s0)p + pT(s0)p (triangle inequality).
If pWS(s0)p > 2 for some right half place s0, then pS(s0)p < 1/2, since

sup
ω
pWS(iω )S(iω )p = sup

Re(s)≥0
pWS(s)S(s)p ≤ 1(Maximum Modulus Theorem).

Analogously we get pT(s0)p < 1/2. Then

1 = pS(s0) + T(s0)p ≤ pS(s0)p + pT(s0)p < 1

and we arrive to contradiction. Hence either pWT(s)T(s)p > 1 or pWS(s)S(s)p >
1 and the corresponding specification must fail.

b. We have

WS(1) =
(
1+ 0.1
1

)n

=
(
1+ 10
10

)n

= WT(1)

and the value is larger than 2 for n ≥ 8. Hence, the statement in a shows
that the specifications are incompatible.

C(s) P(s)+

+

++

−I

r

y

z

v

n

d

Figure 6.4 System in Problem 6.6

6.6
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a. The requirements on pS(iω )p = σ̄ (S(iω )) and pT(iω )p = σ̄ (T(iω )) may be
formulated as

pS(iω )p ≤ 1
10
, ω ≤ 0.1, pT(iω )p ≤ 1

10
, ω ≥ 2

pS(0)p ≤ 1
100

b. The specifications in a can be formulated with weighting functions WS and

WT as

pS(iω )p ≤ pW−1
S (iω )p, ∀ω

pT(iω )p ≤ pW−1
T (iω )p, ∀ω

If e.g. W−1
S and W−1

T are chosen according to

W−1
S (s) = a1

(

1+ s
b1

)

, W−1
T (s) =

a2

s

(

1+ s
b2

)

we get

W−1
S (s) =

1

100
(1+ 100s), W−1

T (s) =
0.14

s

(

1+ s
2

)

6.7

a. The constraint

pS(iω )p ≤ ω
√

ω 2 + 36
ω 2 + a2 ∀ω

is equal to

sup
ω

∣
∣
∣
∣

ω 2 + a2
ω
√

ω 2 + 36
S(iω )

∣
∣
∣
∣
≤ 1.

This can be rewritten as

sup
ω
pWS(iω )S(iω )p ≤ 1

where

pWS(iω )p =
ω 2 + a2

ω
√

ω 2 + 36
[ WS(s) =

(s+ a)2
s(s+ 6) .

From theorem 7.4 in [Glad, Ljung] we know that this specification can only
be satisfied if

pWS(z)p ≤ 1.
Since

pWS(2)p =
(2+ a)2
16

the specification is impossible to satisfy for a > 2.

40



Solutions to Exercise 6

b. With

C(s) = 2(s
2 + 5s+ 6)
s(s+ 6)

the sensitivity function becomes

S(s) = 1

1+ PC =
s(s+ 6)
(s+ 2)2 .

This gives

pS(iω )p = ω
√

ω 2 + 36
ω 2 + 4

which satisfies the specification for a = 2.
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Solutions to Exercise 7. Controller Structures

and Preparations for Laboratory Exercise 2

Note: Exercises 7.1-7.3 serve as preparation for Laboratory Excercise 2.

7.1 a. The relative gain array for a complex valued matrix is given by

RGA (G) = G. ∗ (G†)T

where † denotes the pseudo-inverse of G, and .∗ denotes element wise mul-
tiplication. For a process G(s) the RGA is usually computed for the DC-gain
(ω = 0) and the cut-off frequency (ω = ω c). By inspecting the elements in
the RGA-matrix, we can often decide what output should be controlled with

what input. We should choose a pairing that gives the diagonal elements

close to 1 and avoid pairings that give negative diagonal elements.

b.

RGA(G(0)) = G(0) . ∗ G−T (0) =
(−5

7
12
7

12
7

−5
7

)

c. Since we should avoid negative diagonal elements and keep the diagonal

elements close to 1, we should choose the pairing y1 Q u2 and y2 Q u1.

7.2 We have

P(0) =





1 0 0

0 0.01 0.1

0.1 1 0





and

P(0)−1 =





1 0 0

−0.1 0 1

0.01 10 −0.1





RGA(P(0)) = P(0) .∗ (P(0)−1)T =





1 0 0

0 0 1

0 1 0





The RGA suggests that we should control output 1 with input 1, output 2

with input 3, and output 3 with input 2.

7.3 a. We see from the flow equation

Ai
d∆hi
dt

= −ai
√

�
2h0i

∆hi + ∆qin (7.1)

that the outflow from tank i is

qout = ai
√

�
2h0i

∆hi.
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The inflows into the tanks are found as the sum of the outflow from the

tank above and the flow from the pumps into the respective tanks. Writing

down equation (7.1) for each of the four tanks now gives the dynamics.
Substituting the time constants Ti into the dynamics, and arranging them

into matrix form then gives the state space form.

b. The transfer matrix is given by

P(s) = C(sI − A)−1B =

=



kc 0 0 0

0 kc 0 0









s+ 1
T1

0 − A3

A1T3
0

0 s+ 1
T2

0 − A4

A2T4

0 0 s+ 1
T3

0

0 0 0 s+ 1
T4





−1


γ 1k1
A1

0

0
γ 2k2
A2

0
(1− γ 2)k2
A3

(1− γ 1)k1
A4

0





=





γ 1c1
1+ sT1

k2

k1
⋅

(1− γ 2)c1
(1+ sT1)(1+ sT3)

k1

k2
⋅

(1− γ 1)c2
(1+ sT2)(1+ sT4)

γ 2c2
1 + sT2





c. The zeros are given by the equation

T3T4s
2 + (T3 + T4)s+ 1−

(1− γ 1)(1− γ 2)
γ 1γ 2

= 0

The two first coefficients are always positive, since T3,T4 > 0. The last
coefficient is positive (and both zeros are thus stable) iff

(1− γ 1)(1− γ 2)
γ 1γ 2

< 1 \ γ 1 + γ 2 > 1

In the case γ 1 = γ 2 = 0.7 we get a minimum-phase system which should be
easier to control than the non-minimum-phase system we get in the case

γ 1 = γ 2 = 0.3.

d. We have

P(0) =





γ 1c1
k2

k1
(1− γ 2)c1

k1

k2
(1− γ 1)c2 γ 2c2





and

P(0)−1 = 1

c1c2(γ 1 + γ 2 − 1)





γ 2c2 −k2
k1
(1− γ 2)c1

−k1
k2
(1− γ 1)c2 γ 1c1
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RGA(P(0)) = P(0) .∗ (P(0)−1)T =

= 1

c1c2(γ 1 + γ 2 − 1)




γ 1c1γ 2c2 −(1− γ 2)c1(1− γ 1)c2

−(1− γ 2)c1(1− γ 1)c2 γ 2c2γ 1c1





=





γ 1γ 2
γ 1 + γ 2 − 1

1− γ 1γ 2
γ 1 + γ 2 − 1

1− γ 1γ 2
γ 1 + γ 2 − 1

γ 1γ 2
γ 1 + γ 2 − 1





=



λ 1− λ

1− λ λ





In the case γ 1 = γ 2 = 0.7 we get

RGA(P(0)) =



1.225 −0.225
−0.225 1.225





The RGA suggests we should control output 1 with input 1 and output 2

with input 2.

In the case γ 1 = γ 2 = 0.3 we get

RGA(P(0)) =



−0.225 1.225

1.225 −0.225





The RGA suggests that in this case we should control output 1 with input

2 and output 2 with input 1.

7.4 a. We compute the RGA for stationarity, i.e. s = 0.

RGA(G(s)) =
(
s−1
s+1

2
s+1

2
s+1

s−1
s+1

)

gives

RGA(G(0)) =
(−1 2

2 −1

)

.

Since you should avoid pairing that gives negative diagonal elements we

choose y1 Q u2 and y2 Q u1.

b. We have that

G(0) =
(
1 −2
1 −1

)

Using a decoupled controller structure with W1 = G−1(0) and W2 = I we get
a decoupled system in stationarity. (See Glad&Ljung ch. 8.3.) The controller
is

F(s) = W1Fdiag(s)W2 =
(−F11(s) 2F22(s)
−F11(s) F22(s)

)

.
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Figure 7.1 Decentralized control

7.5 1. Decentralized control. First we calculate the RGA of the process,

RGA(G(0)) = G(0) . ∗ G−T(0) =
(
1.2308 −0.2308
−0.2308 1.2308

)

.

We see that we should choose y1 Q u1 and y2 Q u2. A resonable

tuning, either by pole placement or hand tuning, gives PI-controllers

with parameters close to

F(s) =
(
2(1+ 1

0.5s
) 0

0 2(1+ 1
0.5s
)

)

.

See figure 7.1 for step responses.

2. Decoupled control. The inverse of the static gain matrix is given by

G−1(0) =
(
4 3

1 4

)−1

Thus, for decoupling, we use W1 = G−1(0) and W2 = I. Hand-tuning
of the PI-controllers gives

F(s) =
(
40(1+ 1

0.5s
) 0

0 20(1+ 1
0.8s
)

)

.

See figure 7.2 for step responses.
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Figure 7.2 Decoupled control

close all

clear all

s = tf(’s’);

G = [4/(s+1) 3/(3*s+1); 1/(3*s+1) 2/(s+0.5)];

%Decentralized control

RGA = dcgain(G).*(inv(dcgain(G)))’

F = [2*(1+1/(0.5*s)) 0;0 2*(1+1/(0.5*s))];

figure(1)

step(feedback(G*F, eye(2)),5)

title(’Decentralized control’);grid

% Decoupled design

Go= dcgain(G)

F = [40*(1+1/(0.5*s)) 0;0 20*(1+1/(0.8*s))];

figure(2);

step(feedback(G*inv(Go)*F, eye(2)),5);

title(’Decoupled design’);grid
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Optimal Control

8.1

a. The Riccati equation becomes (A = a, B = 1, M = 1, Q1 = 1, Q2 = R)

2Sa+ 1− SR−1S = 0

This gives

S = aR +
√

(aR)2 + R

(S = aR−
√

(aR)2 + R is not a solution since S has to be positive definite.)
Thus the optimal control is given by

L = S
R
= a+

√

a2 + 1
R
.

The closed loop system is hence, using u(t) = −Lx(t) + Lrr(t)

ẋ(t) = −
√

a2 + 1
R
x(t) + Lrr(t)

y(t) = x(t)

Lr has to be chosen so that we get a stationary gain of 1 from the reference

to the output, i.e. Gr→y(0) = C(−A+ BL)−1BLr + D = 1.

We get Lr = (L − a) =
√

a2 + 1
R
.

b. See Matlab code below and Figure 8.1. Conclusion: Less weight on u gives

a faster system since we are allowed to move the control signal more, and

vice versa.

clear all

close all

A= 1;

B = 1;

C = 1;

P = ss(A, B, C, 0);

Q = 1;

Rvec=0.001:0.001:0.5;

for i=1:length(Rvec)

R = Rvec(i);

[L, S, E] = lqr(P,Q, R);

Evec(i) = E;

end
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plot(Rvec, Evec)

xlabel(’Control signal weight’)

ylabel(’Closed loop pole’)

grid
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Figure 8.1 Control signal weight versus closed loop pole

8.2 See Figure 8.2 and Matlab code below

clear all

close all

A = [1 0;1 0];

B = [1 0]’;

C = [1 1];

%using lqry

sys = ss(A, B, C, 0);

[L2, S, E]=lqry(sys, R,R)

eig(A-B*L2)

%simulate the system with initial conditions

sys = ss(A-B*L2, B, C, 0);

x0 = [1 1];

initial(sys,x0);grid

%Solving the Riccati equation
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Q = C’*C;

R = 1;

S = zeros(2,1);

E = eye(2);

[X, K, G]=care(A, B, Q, R, S, E);

L1 = R\B’*X

eig(A-B*L1)
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Figure 8.2 Response to initial conditions

8.3 The loop gain is

L(sI − A)−1B = 6

(s+ 1)(s+ 2)
Thus, as seen in figure 8.3, the Nyquist curve will approach the origin with

a phase of −180○. LQ-optimal loop gain always has an asympototic phase
of −90○. Therefore, it can not be an LQ-optimal state feed back vector.

8.4 The system has two unstable poles in 2 and 3. If the cost function should

be less than ∞ then the system must be stabilizable, i.e. all unstable poles
must be controllable (due to Q1 > 0). The controllability matrix is given by

Wc = (B AB) =
(−4 −12
8 24

)

which is a rank 1 matrix. Thus, only one of the modes is controllable mean-

ing that there is an uncontrollable, unstable mode, and hence, we can not

make the cost function less than ∞.
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Figure 8.3 Nyquist plot.

8.5

a. The cost function is J =
∫ ∞

0

xT(t)
(
1 0

0 2

)

x(t)+uT(t)Ru(t)dt, R = 0.01, 10, 1000.

b. See Figure 8.4 for step responses, and Matlab code below.

clear all

close all

A=[1 3; 4 8]; B=[1; 0.1]; M=[0 1];

P=ss(A,B,M,0);

Q1=[1 0; 0 2]; Q2_vector=[0.01 10 100];

for i=1:length(Q2_vector)

[L,S,E]=lqr(P,Q1,Q2_vector(i));

% Calculating Lr (static gain to output must be 1)

Lr=1/(M/(B*L-A)*B);

% Calculating the control signal:

to_control_signal=Lr-L*ss(A-B*L,B*Lr,eye(2),0);

% Calculating the output signal:

to_output_signal=ss(A-B*L,B*Lr,M,0);
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Figure 8.4 Step responses for different weight on control signal.

% Plotting step responses

figure(11)

subplot(3,2,i*2-1)

step(to_control_signal)

axis([0 10 -Inf Inf])

title([’Control signal, Q_2=’ num2str(Q2_vector(i))])

subplot(3,2,i*2)

step(to_output_signal)

axis([0 10 -Inf Inf])

title([’Output signal, Q_2=’ num2str(Q2_vector(i))])

poles{i}=E;

end

poles{:}

8.6

a. Put

S =
(

s1 s2

s2 s3

)
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and solve the Ricatti equation

Q1 + ATS+ SA− SBQ−12 BTS = 0.

This gives

(

0 0

s1 s2

)

+
(

0 s1

0 s2

)

+
(

1 0

0 0

)

− 1

0.1
⋅

(

s22 s2s3

s2s3 s23

)

= 0,

with the solution

s1 =
√
2 ⋅ 10−1/4,

s2 = 10−1/2,
s3 =

√
2 ⋅ 10−3/4.

The optimal controller is given by

L = Q−12 BTS = (
√
10

√
2 ⋅ 101/4).

To get y = r in stationarity:

1 = G(0) = M(−A+ BL)−1BLr [ Lr =
√
10.

b. Both x1 and x2 must be measured, e.g.

C =
(
1 0

0 1

)

.

c. 3. is the only case with a cost on the velocity x2. This makes the controller

try to avoid rapid variations in x1, so we get 3.− D), the only step response
without overshoot. The weight, Q2, on the control signal determines the

speed of the system. A low weight on the control signal gives a faster system

since we are allowed to use more control signal. This gives 1.− C), 2.− A),
4.− B).

8.7

a. Weighting matrices Q1 =
(

1 0

0 0

)

och Q2 = η. The Riccati equation to be

solved with respect to S is

ATS+ SA+ Q1 − SBQ−12 BTS = 0
Put

S =
(

s1 s2

s2 s3

)

,

which gives

(

0 0

s1 s2

)

+
(

0 s1

0 s2

)

+
(

1 0

0 0

)

− 1
η

⋅

(

s22 s2s3

s2s3 s23

)

= 0
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We see, by insertion, that

s1 =
√
2 ⋅ η1/4

s2 = η1/2

s3 =
√
2 ⋅ η3/4

solves the Riccati equation.

b. The optimal state feedback is

L = Q−12 BTS =
1

η
⋅ (0 1 )

( √
2η1/4 η1/2

η1/2
√
2 ⋅ η−3/4

)

= 1
η

⋅ (η1/2
√
2η3/4) = (η−1/2

√
2 ⋅ η−1/4)

The poles are the eigenvalues to A−BL. Put µ = η−1/4 [ L = ( µ2
√
2 ⋅ µ ) .

This gives

0 = det
(

s −1
µ2 s+

√
2 ⋅ µ

)

= s2 +
√
2µs+ µ2,

that is

s = − µ√
2
±
√

µ2

2
− µ2 = − µ√

2
± i ⋅ µ√

2
=

= − µ√
2

⋅ (1± i) = − 1√
2 ⋅ η1/4

⋅ (1± i)

If η is reduced, the distance between the poles and the origin will increase.
This means that u(t) will increase. Check the criterion!

53



Solutions to Exercise 9. Kalman

Filtering/LQG

9.1 a. We have that A = B = C = N = M = 1. The Riccati equation thus reduces
to

2P + R1 −
P2

R2
= 0,

which has the positive semi-definite solution P = R2 + R2
√

1+ R1
R2
. Thus,

the Kalman filter gain is

K = 1

R2
P = 1+

√

1+ R1
R2

= 1+
√

1+ β .

b. The Kalman filter dynamics are given by

˙̂x(t) = Ax̂(t) + Bu(t) + K (y(t) − Cx̂(t))

where y(t) = Cx(t) + v2(t). Using the values A = B = C = N = M = 1 we
have the error dynamics

ė(t) = (A−KC)e(t)−Kv2(t)+v1(t) = −
√

1+ β e(t)−(1+
√

1+ β )v2(t)+v1(t)

c. The position of the Kalman filter pole is −
√

1+ β . We can see that if
β → ∞, the pole of the Kalmanfilter → −∞. Hence, the estimation er-
ror dynamics are fast, we believe very much in our measurements. On the

other hand, if β → 0, the Kalman filter pole tends to -1, that is, as fast as
the process pole. Now, we trust the model more than the measurements.

9.2 See Matlab code below.

>> clear all

>> close all

>> A = [0 1;1 0];

>> C = [1 0];

>> N = [1 1]’;

a. >> %Using care

>> Q = N*N’;

>> R = 1;

>> S = zeros(2,1);

>> E = eye(2);

>> [X, K, G]=care(A’, C’, Q, R, S, E);

>> K1 = X*C’

K1 =
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2.4142

2.4142

>> eig(A-K1*C)

ans =

-1.4142

-1.0000

b. >> %Using lqe

>> [K2, P, E]=lqe(A,N, C, 1,1,0)

K2 =

2.4142

2.4142

P =

2.4142 2.4142

2.4142 2.4142

E =

-1.4142

-1.0000

>> eig(A-K2*C)

ans =

-1.4142

-1.0000

9.3 a. The noise model has the following state space realization,

ẋw(t) = − δ xw(t) + n(t)
w(t) =xw(t)

Extending the state space model of the process with the noise model gives,

ẋe(t) =
(−1 0

0 −δ

)

xe(t) +
(
1

0

)

u(t) +
(
1 0

0 1

)

v1e(t)

y(t) = (1 1 ) xe(t) + v2(t)
z(t) = (1 1 ) xe(t)

Note here that z(t) contains the noise state xw(t), so that, if we design an
LQG controller we will try to minimize the disturbance state effect also.
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b.

˙̂x(t) = Ae x̂(t) + Beu(t) + K (t)(y(t) − Cx̂(t))
K (t) = P(t)CTe R−12
Ṗ(t) = AeP(t) + PATe − K (t)R2KT (t) + NR1N

φvi = 1
u(t) = −Lx̂(t)
L = Q−12 BTe S
0 = ATe S+ SA+ MTQ1M − SBeQ−12 BTS

We are looking for the stationary Kalman filter and therefore solve for

Ṗ(t) = 0 as before. Ri are noise intensities and Qi are the weighting ma-
trices for the LQ-problem.

See Matlab code in (d). Why do we need a small weight on u(t)? Since
integral action requires the control signal magnitude to be large at low

frequencies we have to let the control signal be large, otherwise the low

frequency gain will be limited independent of noise model.

c. If we change the cut-off frequency of the noise filter, we change the cut-

off frequency of the low frequency gain of the controller, this is shown in

Figure 9.1.

If we on the other hand change the noise intensity, we indirectly change

the gain of the noise filter. Hence, we will increase the controller gain for

all frequencies, see Figure 9.2.

d. Response to constant load disturbances will always have a static error since

we do not have infinite gain at low frequencies. That is, we do not have pure

integral action, only approximative.

See below for Matlab code,

clear all

close all

B = [1; 0];

C = [1 1];

D = 0;

N = eye(2);

H = [0 0];

%Different values of cut-off frequency of noise filter

%Note that the values in the diagonal of the disturbance

%filter inputintensity matrix [1 0; 0 100] are arbitrary;

%their relation will later be varied

A = [-1 0;0 -0.1];

sys = ss(A, [B N], C, [D H]);

[Kest, L, P]=kalman(sys, [1 0; 0 100], 1);

P = ss(A, B, C, D);
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Figure 9.1 Change of cut-off frequency

[K,S,E] = lqry(P,1,0.0000001,0);

R1 = lqgreg(Kest,K);

A = [-1 0;0 -0.001];

sys = ss(A, [B N], C, [D H]);

[Kest, L, P]=kalman(sys, [1 0; 0 100], 1);

P = ss(A, B, C, D);

[K,S,E] = lqry(P,1,0.0000001,0);

R2 = lqgreg(Kest,K);

A = [-1 0;0 -0.00001];

sys = ss(A, [B N], C, [D H]);

[Kest, L, P]=kalman(sys, [1 0; 0 100], 1);

P = ss(A, B, C, D);

[K,S,E] = lqry(P,1,0.0000001,0);

R3 = lqgreg(Kest,K);

figure(1)

bode(R1, R2,’--’, R3,’-.’);grid

legend(’R1’, ’R2’, ’R3’)

title(’Cut-off frequency change’)

%Different values of the disturbance filter input intensity
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Figure 9.2 Change of noise intensity

A = [-1 0;0 -0.001];

sys = ss(A, [B N], C, [D H]);

[Kest, L, P]=kalman(sys, [1 0; 0 1], 1);

P = ss(A, B, C, D);

[K,S,E] = lqry(P,1,0.0000001,0);

R1 = lqgreg(Kest,K);

A = [-1 0;0 -0.001];

sys = ss(A, [B N], C, [D H]);

[Kest, L, P]=kalman(sys, [1 0; 0 10], 1);

P = ss(A, B, C, D);

[K,S,E] = lqry(P,1,0.0000001,0);

R2 = lqgreg(Kest,K);

A = [-1 0;0 -0.001];

sys = ss(A, [B N], C, [D H]);

[Kest, L, P]=kalman(sys, [1 0; 0 100], 1);

P = ss(A, B, C, D);

[K,S,E] = lqry(P,1,0.0000001,0);

R3 = lqgreg(Kest,K);

figure(2)
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bode(R1, R2,’--’, R3,’-.’);grid

legend(’R1’, ’R2’, ’R3’)

title(’Intensity change’)

9.4 a. To get a small complementary sensitivity at the oscillation frequency, we

need the LQG controller to have a low gain at this frequency; effectively

ignoring corresponding oscillations in the output y. This can be achieved by

modelling the influence of the oscillatory system as a disturbance w on y

according to

ẋ = Ax + Bu + Nv1
y= Cx +w+ v2

To model the oscillatory characteristics of w, we can consider w to be gener-

ated by passing white noise n through a second-order filter with a resonance

peak at ω 0 = 0.5 rad/s and a zero at s = 0, with transfer function

H(s) = Kvs

s2 + 2ζ ω 0s+ω 20
.

The zero at s = 0 is placed there to avoid an increased gain at low frequen-
cies, which would otherwise follow. It is not necessary unless it is important

to avoid this phenomenon and the exercise can be solved without it, which

will then yield a slightly different solution to the one below.

The parameter ζ determines the magnitude of the resonance peak, and we
can choose e.g. ζ = 0.02.
On state-space form, the filter is given by

ẋv(t) =
(

−0.02 −0.25
1 0

)

xv(t) +
(

1

0

)

n(t)

w(t) = ( Kv 0 ) xv(t)

Extend the original state space form with the noise model

ẋ(t) =








0 1 0 0

0 −1 0 0

0 0 −0.02 −0.25
0 0 1 0







x(t) +








0

1

0

0







u(t) +








0.1 0

0.1 0

0 1

0 0








(
v1(t)
n(t)

)

y(t) = ( 1 0 Kv 0 ) x(t) + v2(t)
z(t) = ( 1 0 0 0 ) x(t)

If this model is used to compute K in the Kalman filter, for an appropriate

value of Kv, we get supression of the resonance frequency. The intensity of

the added noise input can e.g. be set to 1 since we can control the amplitude

of the disturbance by changing Kv. Thus, we have the intensity matrices

R1 = diag(1, 1), R2 = 0.1.
Note that z(t) do not depend on the xv-states, i.e., if we are about to de-
sign an LQG controller, we have no weight on the added noise. The added

noise is only used for specifying at what frequencies our measurements are

uncertain.
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Figure 9.3 Attenuation of oscillative disturbance

b. See figure 9.3 for the Bode plot of the transfer function from measurement

y(t) to estimated output ŷ(t) using Kv = 1. We see a large attenuation of
frequencies at ω = 0.5 rad/s.
Matlab code

clear all

close all

A = [0 1 0 0;0 -1 0 0;0 0 -0.02 -0.2501;0 0 1 0];

B = [0 1 0 0]’

C = [1 0 1 0];

N = [0.1 0; 0.1 0; 0 1; 0 0];

[K, P, E] = lqe(A,N,C,blkdiag(1,1),0.1);

Cnom = [1 0 0 0];

tf(ss(A-K*C, K, Cnom, 0))

bode(ss(A-K*C, K, Cnom, 0),{0.1, 100})

grid

9.5 a. We have the state-space representation

ẋ(t) =
(
0 1

0 0

)

x(t) +
(
0

1

)

u(t) +
(
0

1

)

v1(t)

y(t) = ( 1 0 ) + v2(t)
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(If a different state-space representation is chosen, the solution will look
different although the steps will be similar.)
The Riccati-equation

AP + PAT + NR1NT − PCTR−12 CP = 0

is solved by letting P =
(

p1 p2

p2 p3

)

. The equations become,

2p2 − p21 = 0
p3 − p1p2 = 0
1− p22 = 0

The solution is thus

P =
(√
2 1

1
√
2

)

with the optimal gain

K = PCT = (
√
2 1 )T

b. The poles of the Kalman filter are the eigenvalues of A− KC,

A− KC =
(−

√
2 1

−1 0

)

with the eigenvalues λ j =
1√
2
(−1± i).

61



Solutions to Exercise 10. LQG and

Preparations for Laboratory Exercise 3

10.1

a. clear all

close all

clc

A = [0 1;0 0];

B = [1 6;0 4];

C = [1 1];

D = zeros(1,2);

%State feedback design

process = ss(A, B, C, D);

Q1 = 1;

Q2 = eye(2);

[L, S, E] = lqry(process,Q1,Q2);

%Kalman filter design

G = eye(2);

H =zeros(1,2);

syskalman = ss(A, [B G], C, [D H]);

R1 = eye(2);

R2 = 1;

[Kest, K, E] = kalman(syskalman,R1,R2);

%Construct controller

reg = lqgreg(Kest, L);

b. Using the state vector xe = ( xT x̂T )T and the obvious notation A, B, C,
we get the system

ẋe =
(
A −BL
KC A− BL − KC

)

xe +
(
I

0

)

v1 +
(
0

K

)

v2

z = (C 0 ) xe

c. With less measurement noise the estimated states converge faster to the

actual states, and the output z converge faster to zero. See Figures 10.1-

10.2 and Matlab code.

As shown in exercise 9.1, only the relation between process noise and mea-

surement noise matters. More process noise will therefore have the same

effect as less measurement noise.
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Figure 10.1 Initial response if little measurement noise ( R2
R1
= 0.1).
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Figure 10.2 Initial response if much measurement noise ( R2
R1
= 100).

63



Solutions to Exercise 10

%Construct closed loop

closed_loop = feedback(process, -reg);

%Plot response

[Y, T, X] = initial(closed_loop, [1 -1 0 0],0:0.01:20);

figure(1)

subplot(311)

plot(T, X(:,1));hold on;plot(T, X(:,3),’--’);grid

legend(’x1’,’x1hat’);ylabel(’x1, x1hat’)

subplot(312)

plot(T, X(:,2));hold on;plot(T, X(:,4),’--’);grid

legend(’x2’,’x2hat’);ylabel(’x2, x2hat’)

subplot(313)

plot(T,Y); grid; ylabel(’y’);

10.2 First of all, we see that we can not measure the states we want to control, so

we need a Kalman filter. We start by setting up the problem in the standard

form

ẋ =
(
0 1

0 0

)

x +
(
0

1

)

u+ v1

y = (1 0 ) x + v2
z = x

where v2 is white noise with intensity 1. The cost function is

J =
∞∫

0

(

zTQ1z+ uQ2u
)

dt

with Q1 = I2 and Q2 = 1.
For the state feedback gain, we have to solve the Riccati equation

ATS+ SA+ Q1 − SBQ−12 BTS = 0

This gives the following equations,

1− s22 = 0
s1 − s2s3 = 0

2s2 + 1− s23 = 0

with the solution s1 = s3 =
√
3, s2 = 1. This gives the state feedback vector

L = BTS = (1
√
3 ).

For the Kalman filter we must solve the Riccati equation

AP + PAT + R1 − PCTCPT = 0

with R1 = I2, which gives

2p2 + 1− p21 = 0
p3 − p1p2 = 0
1− p22 = 0
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Using the solution for S we have that p1 = p3 =
√
3 and p2 = 1 and

K = PCT =
(√
3

1

)

The controller is given by

˙̂x = (A− BL − KC)x̂ + Ky
u = −Lx̂

and we have that

A− BL − KC =
(−

√
3 1

−2 −
√
3

)

10.3 No solution provided.
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Parametrization and Dead Time

Compensation

11.1 a. We can divide P even further into smaller parts such that

Pzw =



Pxd Pxn

Pvd Pvn



 , Pzu =



Pxu

Pvu



 , Pyw =


 Pyd Pyn





Looking at the block diagram of the closed-loop system, we see that

Pxd = P0, Pxn = 0, Pvd = 1, Pvn = 0
Pxu = P0, Pvu = 1
Pyd = P0, Pyn = 1
Pyu = P0

Note that you have to determine the open-loop transfer functions, as if

C = 0. The results gives us the following transfer matrix P:

P =





P0 0 P0

1 0 1

P0 1 P0




,

where

Pzw =



P0 0

1 0



 , Pzu =



P0

1



 , Pyw =


 P0 1



 , Pyu = P0

b.

u = Cy

y = Pyuu+ Pyww = PyuCy+ Pyww[ y =
1

1− PywC
Pyww

z = Pzww+ Pzuu = Pzww+ PzuCy = (Pzw + PzuC
1

1− PywC
Pyw)w

c. Using the formula, we get

H = Pzw + PzuC(1− PyuC)−1Pyw

=



P0 0

1 0



+



P0

1



C(1− P0C)−1


 P0 1





=



P0 0

1 0



+ C

1− P0C




P20 P0

P0 1





= 1

1− P0C




(P0 − P20C) + P20C P0C

(1− P0C) + P0C C



 =



P0S −T
S CS





66



Solutions to Exercise 11
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Figure 11.1 Mass spring system in Exercise 11.2.

This means that the closed loop transfer function H consists of the gang of

four. Note that

T = 1− S = − P0C

1− P0C
in this case where we have no explicit minus sign in the feedback loop.

d. Go back to the formula H = Pzw+ PzuC(1− PyuC)−1Pyw, but replace C(1−
PyuC)−1 with Q. This gives

H = Pzw + PzuQPyw =



P0 0

1 0



+ Q



P20 P0

P0 1



 =



P0 + P20Q P0Q

1+ P0Q Q





where each element of H is linear in Q.

e. Rearranging the Q formula a bit, we get

Q = C(1−P0C)−1 [ Q−QP0C = C[ (1+QP0)C = Q,[ C = (1+QP0)−1Q

where the last equality gives us the same controller as (8.18) in Glad&Ljung
with the only difference that the feedback sign is a part of the controller

here. P0 is assumed to be the model we have of the system.

11.2 a. From the equation for the plant

ẋ = Ax + Bu
p1 = C1x
p2 = C2x
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and the block diagram of the closed-loop system, we can see that

ẋ = Ax + B(u+ d) = Ax + (0 0 B )





r

n

d



+ Bu

= Ax + Bww+ Bu

z =





p1

uo

e



 =





C1x

u+ d
r − p1



 =





C1x

u+ d
r − C1x





=





C1

0

−C1



 x +





0 0 0

0 0 1

1 0 0









r

n

d



+





0

1

0



u

= Czx + Dzww+ Dzuu

y=
(

r

p2 + n

)

=
(

r

C2x + n

)

=
(
0

C2

)

x +
(
1 0 0

0 1 0

)




r

n

d



+
(
0

0

)

u

= Cyx + Dyww+ Dyuu

b. The constraint on the maximum control signal, qu(t)q ≤ umax , will corre-
spond to the closed loop transfer matrix Huor, with index (2, 1). In problem
11.1 we saw that the transfer function Huod will correspond to the sensi-

tivity function S. The Ms constraint will therefore correspond to the index

(2, 3). The objective function will be related to two indices, namely those
associated with Her and Huor, (3, 1) and (2, 1).

c. We have the formula H = Pzw+PzuQPyw. Since Pzu is a 3$1 system and Pyw
is a 2$ 3 system, Q must be 1$ 2. Therefore we have that Q = [Q1 Q2].

11.3 The system is non-minimum phase. There are many ways to choose the Q

filter for IMC, but we have to respect some fundamental limitations. Here

we will use a simple choice of Q. We try to cancel the process dynamics

with Q(s), but use the stable counterpart 6+3s of the zero instead. We also
need to add a pole to Q(s) to make it proper, which we place in s = λ−1.
We get

Q(s) = s2 + 5s+ 6
(6+ 3s)(λs + 1) =

s+ 3
3(λs+ 1)

The controller becomes

C(s) = s2 + 5s+ 6
s(3λs+ 6(λ + 1))

which can be rewritten as

C(s) = 5

6(1 + λ)

(

1+ 6
5s
+ s
5

)
1

3λ
6(λ+1)s+ 1

.

This corresponds to a PID controller in series with a lowpass filter.
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11.4 As before, there are many ways to apply IMC. Here we try the two ap-

proaches to deal with time delays described in Glad&Ljung section 8.3.

1. Choose to ignore the time delay when the Q(s) transfer function is
calculated, but not when Fy(s) is calculated.
Thus, we get

Q(s) = (P(s)e4s)−1
λs+ 1

Hence, the controller is given by

Fy(s) =
Q(s)

1− Q(s)P(s) =
s+ 1

λs+ 1− e−4s

2. Approximate the time delay with a first order Padé approximation,

G(s) ( 1

s+ 1
1− 2s
1+ 2s .

When we calculate the Q(s)-transfer function, we exclude 1−2s. Thus,
we now have

Q(s) = (s+ 1)(2s + 1)
(λs+ 1)2 .

Hence we have the controller

Fy(s) =
Q(s)

1− Q(s)P(s) =
(s+ 1)(2s + 1)

(λs+ 1)2 − (1+ 2s)e−4s

The Nyquist plots can be generated in Matlab, using the following lines of

code. In this case, lambda is chosen to 3.

>> lambda = 3;

>> w = logspace(-2,2,1000);

>> P = 1./(1+i*w).*exp(-4*i*w);

>> Fy1 = (i*w+1)./(lambda*i*w+1-exp(-4*i*w));

>> Fy2 = (i*w+1).*(1+2i*w)./((lambda*i*w+1).*(lambda*i*w+1)-(1+2*i*w).*exp(-4*i*w

>> figure

>> plot(P.*Fy1)

>> grid

>> figure

>> plot(P.*Fy2)

>> grid

From the plots (Figure 11.2) we see that neither encircles −1 and the closed
loop systems are stable in both cases.
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Figure 11.2 Nyquist plots of the loop transfer functions in Problem 11.4. The left plot shows

the first alternative and the right plot shows the second.
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Solutions to Exercise 12. Synthesis by Convex

Optimization

12.1

a. The inputs to the controller are r and y0, i.e.

y =
(
r

y0

)

.

The input to P is

(
w

u

)

, which contains 4 signals, and the output is

(
z

y

)

,

which contains 4 signals as well. Thus P must be 4$ 4.

b. We know that

(
z

y

)

=








e

u

r

y0







,

(
w

u

)

=








d

n

r

u







.

The block diagram gives that

e = r − x = r − P0(d+ u),
u = u,
r = r,
y0 = n+ P0(d+ u).

Arranging this into matrix form gives the answer:

P =








−P0 0 1 −P0
0 0 0 1

0 0 1 0

P0 1 0 P0







.

c. The control objective a) is convex in H , and H is a linear function of Q, so
the control objective a) is convex in Q. Since it is satisfied for Q1 and Q2,
it is thus satisfied for any convex combination

Q = wQ1 + (1−w)Q2, w∈ [0, 1].

We see from the impulse responses that neither Q1 nor Q2 satisfies b) or
c). However, a convex combination of Q1 and Q2 will give the same convex
combination of the disturbance responses. Taking e.g. w = 0.7,

• The control signal satisfies pu(t)p ≤ 0.7 ⋅ 0.4 + 0.3 ⋅ 2 = 0.88, since
pu(t)p ≤ 0.4 with C1 and pu(t)p ≤ 2 with C2.

• When t ≥ 2, the control error satisfies pe(t)p ≤ 0.7 ⋅ 1+ 0.3 ⋅ 0.1 = 0.73,
since pe(t)p ≤ 1 with C1 and pe(t)p ≤ 0.1 with C2.

Thus we can use Q = 0.7Q1 + 0.3Q2.

71



Solutions to Exercise 12

12.2

a. The green curves in the plots correspond to the nominal controller. See

the plots in Figures 12.1-12.3 and read the figure texts. From the plots we

can also see that the only inactive constraint is the one posed on the control

signal. Also see figure 12.4 for a plot of the open loop Nyquist curve together

with the Ms-circle.
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Figure 12.1 Step responses from reference r to mass position d1. The response violating

the constraints we have posed is the one given with the nominal control and the other one

comes from using our optimized controller.
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Figure 12.2 The nominal controller gives the control signal with the least energy of the

two.
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Figure 12.3 The sensitivity function of the system. The plot that violates the constraint

correspond to the nominal control.
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Figure 12.4 The open loop Nyquist curve and the Ms-circle when the optimal controller is

used.

b. bodemag(K2c)

The bode diagram is displayed in Figure 12.5. The shape of the magnitude

plot is very similar to that of a PD controller with a first order filter. Since

the D-part of a PID controller acts to damp out oscillations, it seems rather

logic that we have this kind of similarity.

The system has its resonance frequency at 5.8 rad/s, which is almost ex-
actly at the same frequency as the deepest dip in the controller magnitude

plot. The logic behind the dip is that we do not want to augment signals
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at this frequency. A PD controller does not have this kind of flexibility in

its structure to damp out a certain frequency and is therefore not so well

suited for highly oscillative systems like this one.
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Figure 12.5 Bode diagram of the controller.

c. The least value on NQ, for which our problem is feasible, is 7. The constraints

that fail are those posed on d1 during a step change in the reference. See

Figure 12.6.
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Figure 12.6 The problem is infeasible with NQ=6.

d. See Figure 12.7 for a plot of the cost function value versus the order of the

Q-filters. When NQ reaches around 20, the control will gain very little from

increased complexity of the Q-filter. We can then say that we have a good
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estimate of the Limit of Performance, i.e. lowest cost that linear controller

can achieve given the problem setup.

The maximum value of the control signal will decrease as the order of

the Q-filters goes up. For NQ= [7, 10, 15, 20], we get umax = [6.0, 4.9, 3.8, 3.7].
This means that the more complex the controller becomes, the more free-

dom it will have to choose its control signal. As it is good to have a control

signal that is low on energy (due to the cost function), it is also likely that
it goes down in magnitude if it has the possibility.
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Figure 12.7 Cost function value plotted against the complexity of the Q-filters.

e. If we start out by setting ρ = 0 (i.e. weight_u = 0.0), then we do not
punish the control signal energy at all, which means that we may get very

agressive and poorly damped control. The constraint on umax will to some

extent prevent this, but if umax is made arbitrarily large then we can get a

step responses like the one in Figure 12.8. If instead γ = 0 while ρ remains
1, then the solution will remain fairly unchanged. The reason is that both

the constraints on rise time and the cost of having a large e will force u to

be quite active still. If the step response constraints are made inactive, the

solution will be fairly close to the one of the nominal LQG controller.

f. The solution will still be feasible when the overshoot is constrained to 0.4%

(os=1.004). In order to make the least possible overshoot even smaller we
can for instance set:

• umax = 7, which will give the control signal a bigger span to work with
• Ms = 1.6, gives the controller a higher gain (see Figure 12.4 and imag-
ine how the open loop system can change if the Ms-circle is made

smaller), making it be able take assume greater values, within the
boundaries set by umax .

• NQ = 30, which will give the controller more freedom to shape the
control signal optimally.

All these 3 changes will be able to handle an overshoot of 0.2% respectively.

NQ = 30 will also be able to shape the step response such that there is

75



Solutions to Exercise 12

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Position of the first mass, d
1

Time (sec)

A
m

pl
itu

de

Figure 12.8 d1 due to a unit step in the reference when ρ = 0. The control is very agressive.

no overshoot (see Figure 12.9). Note that t2 had to be set to 34 (maximum
time for which we have constraints) in order for the lower step constraints
to not make the problem too difficult. Try with a lower value of t2 to see

the effect.
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Figure 12.9 d1 due to a unit step in the reference when no overshoot is allowed.

g. In plot_result.m we find the following line of code

cl = prob.T11 + prob.T12*[prob.Q{1} prob.Q{2}]*prob.T21;

which is used before the plots are created. This line corresponds to the

formula stated in the previous exercise session, namely H = Pzw+PzuQPyw,
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where P includes the nominal controller. Copying this line of code into the

Matlab prompt, followed by bodemag(cl) will give us the 9 desired plots.

Looking at the middle one, corresponding to Huon, we can see that it does

not have high frequency roll-off. A high frequency measurement noise, n,

may therefore lead to a very noise control signal. This shows that it is very

important to take all signals in a system into consideration and that a

solution, even though optimal, may need to be reconsidered. If we were to

modify the problem, a good idea may therefore be to put constraints on this

closed loop transfer function as well.

h. No solution given.
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simplification

13.1

a. Inspection of the locations of the poles and zeros gives us the transfer func-

tion

G(s) = 1.04 s/1.3+ 1
(s/1.2+ 1)(s2 + 0.4s+ 1.04)

b. The closeness of the pole-zero pair on the real axis suggests that a model

reduction might be possible.

c. A balanced realization and the Hankel singular values for the system can

be calculated using the Matlab command

>>> s = tf(’s’);

>>> G = 1.04*(s/1.3+1)/((s/1.2+1)*(s^2+0.4*s+1.04));

>>> [balr,g] = balreal(G);

which gives the following Hankel singular values:

� =





1.5105

1.0196

0.0091





Elimination of the state in the balanced realization corresponding to the

smallest Hankel singular value is done in Matlab by

>>> modsys = modred(balr,g<0.01)

>>> modsysG = tf(modsys)

This gives the following transfer function for the reduced order system:

Gred(s) = 0.0181
s2 − 2.412s+ 57.49
s2 + 0.4086s+ 1.043

A Bode magnitude plot of the original system and the reduced system is

shown in figure 13.1.

13.2 a. With

S =
(
2 0

0 1

)

, A =
(−1 0

−1 −0.5

)

, B =
(
2

1

)

we have

AS+SAT+BBT =
(−2 0

−2 −0.5

)

+
(−2 −2
0 −0.5

)

+
(
2

1

)(
2

1

)T

=
(
0 0

0 0

)
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Figure 13.1 Bode magnitude plot of the original and reduced system in problem 13.1

so S is the controllability gramian. Similarly, with

O =
(
0.5 0

0 1

)

OA+ATO+CTC =
(−0.5 0

−1 −0.5

)

+
(−0.5 −1
0 −0.5

)

+
(
1

1

)

(1 1 ) =
(
0 0

0 0

)

so O is the observability gramian.

b. The Hankel singular values are the eigenvalues of

SO =
(
1 0

0 1

)

so they are both 1.

c. The coordinate change ξ = Tx yields the new gramians Sξ = TSTT and
Oξ = T−TOT−1. To find T we solve the equation Sξ = Oξ . Since both S

and O are diagonal it seems reasonable that a diagonal T will work. With

T =
(
t1 0

0 t2

)

we get the equations

TSTT =
(
t1 0

0 t2

)(
2 0

0 1

)(
t1 0

0 t2

)

=
(
2t1
2 0

0 t2
2

)

and

T−TOT−1 =
(
1/t1 0

0 1/t2

)(
0.5 0

0 1

)(
1/t1 0

0 1/t2

)

=
(
0.5/t12 0

0 1/t22
)

which gives

2t1
2 = 0.5/t12 [ t14 = 1/4 [ t1 = 1/

√
2

t2
2 = 1/t22 [ t24 = 1 [ t2 = 1

.

(You could also use the direct formula for T in the proof on page 81 in [Glad
& Ljung])
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With this T

T =
( 1√

2
0

0 1

)

the gramians become

Sξ =
(
1 0

0 1

)

Oξ =
(
1 0

0 1

)

.

Hence, a balanced realization is

ξ̇ = Âξ + B̂u
y = Ĉξ + D̂u

where

Â = TAT−1 =
( −1 0

−
√
2 −0.5

)

B̂ = TB =
(√
2

1

)

Ĉ = CT−1 = (
√
2 1 ) D̂ = D

d. In this case, the Hankel singular values have the same size, therefore either

could be removed. (However, this means that it is probably not a good idea
to do any truncation at all!) If the second state is removed by letting ξ̇2 = 0,
ξ2 can be expressed in terms of ξ1 through 0 = Â21ξ1 + Â22ξ2 + B̂2u. The
reduced realization then becomes

ξ̇1 = (Â11 − Â12 Â−122 Â21)ξ1 + (B̂1 − Â12 Â−122 B̂2)u
yr = (Ĉ1 − Ĉ2 Â−122 Â21)ξ1 + (D̂ − Ĉ2 Â−122 B̂2)u

where for example Â21 is the element in the second row and first column

in Â.
ξ̇1 = −ξ1 +

√
2u

yr = −
√
2ξ1 + 12u

The transfer function is obtained through the Laplace transform

G1(s) = 12−
2

s+ 1

13.3 a. The Matlab command tf(ss(A,B,C,D)) gives

G(s) = 10s
2 + 18s+ 5

s2 + 1.5s+ 0.5

b. Plotting the Bode diagram for G(s)−G1(s) through the command bodemag(G-G1)

gives 2 as the maximal error, obtained at large frequencies. The error bound,

twice the sum of the truncated singular values, also gives 2. In this case

the error bound is tight.

c. Truncating both states gives

G2 = D̂ − ĈÂ−1 B̂ = 10

80



Solutions to Exercise 13

d. Plotting bodemag(G-Gr) gives 2 as the maximal error, near ω = 1. The error
bound 2(1+ 1) = 4 is conservative.

13.4 Through partial fractions one can write

2s2 + 2.99s+ 1
s(s+ 1)2 = 1

s
+ s+ 0.99(s+ 1)2

The Matlab command

[G3bal,sig]=balreal(tf([1 .99],[1 2 1])) gives

si� =
(
0.4950

0.00001

)

so one state can be removed right away.

G3red=modred(G3bal,(sig<0.1)) yields

−2.525 ⋅ 10−5s+ 1
s+ 1.01 ( 1

s+ 1.01

With the integrator we get the reduced system

1

s
+ 1

s+ 1.01 =
2s+ 1.01
s(s+ 1.01)

The commands balreal and modred can actually be used directly on systems

with an integrator since they do the separation automatically.
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14.1 Partial fraction expansion gives

G(s) =
[

1
(s+1)(s+2)

s+3
(s+1)(s2+6s+8)

]

= 1

s+ 1
[

1 2
3

]

+ 1

s+ 2
[

−1 −1
2

]

+ 1

s+ 4
[

0 −1
6

]

so a realization on diagonal form can be written as

ẋ =





−1 0 0

0 −2 0

0 0 −4



 x +






1 2
3

−1 −1
2

0 −1
6




u

y = [1 1 1 ] x

14.2 Denote the output by z. The spectral density of z is then

Φz = pG(iω )p2Φn(ω ) =
1

iω + a
1

−iω + a =

= 1

a2 +ω 2

14.3

a. The bad damping in the disturbance response is a symptom of low phase

margin, which is approximately 20○ atω c = 1 (as seen in the bode diagram).
The lead filter improves the phase margin, but the phase peak is located

between the zero and pole at

ω p =
√
1.79 ⋅ 8.94 = 4 rad/s,

which is far from ω c!

b. One way to improve the control is to move the phase peak to ω c = 1 by
dividing the pole and zero by 4. The new controller is

C′(s) = K
(

1+ 1
s

)
s/0.45+ 1
s/2.24+ 1.

The gain K should be chosen so that the cutoff frequency is preserved, that

is pC′(iω c)p = pC(iω c)p, which gives K = 0.45.
The new controller gives an increase in phase margin of 19○. The high
frequency gain

lim
s→∞

C(s)

actually decreases from 4.39 to 2.24.
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14.4

a. Block scheme calculations gives

Gy2,m =
B1(s)(s2 −ω 20)

s[A1(s)(s2 −ω 20) + B1(s)ω 20]

Note that this transfer function can be considered as the process in the

outer loop.

b. A process zero at z = ω 0 imposes a constraint on the achievable bandwidth
of the closed loop system - it is not possible to achieve a bandwidth signifi-

cantly larger than ω 0.

c. Plot D shows too high bandwidth of the closed loop to be feasible. Plot B

and C does not fulfill the pS+ T p = 1 constraint. Plot A shows a bandwidth
of about 1 rad/s which is reasonable - hence plot A.

14.5

a. The determinant of the system is

det(G2(s)) =
1

(s+ 1)(s+ 2)

such that the least common denominator of all submatrices is p(s) = (s +
1)(s + 2). Thus, the system have poles in −1, −2 and no zeros. Since the
system has poles in the open left halplane and no non-minimum phase

zeros, there are no fundamental limitations on the system bandwidth.

b.

RGA = G2(0). ∗ (GT2 (0))−1 =



−0.5 0

−3 −1



 . ∗




−2 6

0 −1



 =



1 0

0 1





Since the RGA is the identity matrix we can expect the system to be easily

controlled with decentralized control at low frequencies. The identity matrix

also gives us that it is suitable to pair input 1 with output 1 and input 2

with output 2.

14.6 Using the IMC method, we set Q(s) to

Q(s) = 1

(λs+ 1)n−mG
−1(s)

giving us the controller

C(s) = (1− Q(s)G(s))−1Q(s) =
(

1− 1

(λs+ 1)n−1
)−1 (s+ b)n

(s+ a)(λs+ 1)n−1

= (s+ b)n
(s+ a)((λs+ 1)n−1 − 1)
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To match the structure of the PID controller

K

sTi

(TiTds2 + Tis+ 1)
(sTd
N
+ 1)

we see that we will need to choose n = 2. This leaves us with

C(s) = b2

sλa

( 1
b2
s2 + 2

b
s+ 1)

( s
a
+ 1) ,

such that we can now determine the PID parameters one by one

Ti =
2

b
, Td =

1

Tib2
= 1

2b
, K = b

2Ti

λa
= 2b

λa
, N = Tda =

a

2b
.

Since only K depends on λ , this is the only PID parameter that we have
the possibility to tune ourselves.

14.7 P can be said to consist of several submatrices

P =



Pzw Pzu

Pyw Pyu



 ,

where

Pzw =



Pe1r1 Pe1r2

Pe2r1 Pe2r2



 , Pzu =



Pe1u1 Pe1u2

Pe2u1 Pe2u2



 ,

Pyw =





Py1r1 Py1r2

Py2r1 Py2r2

Pr1r1 Pr1r2

Pr2r1 Pr2r2





, Pyu =





Py1u1 Py1u2

Py2u1 Py2u2

Pr1u1 Pr1u2

Pr2u1 Pr2u2





We can now determine all transfer functions that make up P:

Pzw =



1 0

0 1



 = I, Pzu =



−P011 −P012
−P021 −P022



 = −P0,

Pyw =





0 0

0 0

1 0

0 1





=



0

I



 , Pyu =





P011 P012

P021 P022

0 0

0 0





=



P0

0





14.8

a. Zeros of a multivariate process are defined as the points where the transfer

matrix looses rank. For a quadratic matrix, losing rank is equivalent to the

determinant being zero. The zeros are given by the equation:

det P(s) = 2s+ 5
(s+ 4)(s+ 2)(s+ 1) = 0

Thus s = -2.5
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b. Here RGA(0) is calculated.

G(0) =
[
0.5 −0.5
1 0.25

]

Then RGA(0) becomes

RGA(0) = G(0). ∗ (G(0)−1)T =
[
0.2 0.8

0.8 0.2

]

and thus output 1 should pair with input 2 and output 2 with input 1.

14.9 We see that A and C will give the same controller since we have just scaled

the weights by 100, so A and C will correspond to Step response 1 and 2.

Notice that the system is very oscillative. D has much larger weight on the

control signal, thus we will not be able to get a fast system that dampens

the oscillative system, hence D must correspond to Step response 3. B will

correspond to Step response 4. We have very small weight on the control

signal compared to output, which will give a fast system.
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