
Multivariable Control

Laboratory Exercise 3

Control of Crane with Rotating Load

Per-Ola Larsson

Department of Automatic Control
Lund University

Latest update: October 2, 2013

Figure 1 The crane used in the laboratory exercise. Built by Rolf Braun, Depart-
ment of Automatic Control.

Preparations

• Read chapters 9.1–9.4 in Torkel Glad and Lennart Ljung, Control Theory
— Multivariable and Nonlinear Methods.

• Do preparatory assignments in laboratory exercise manual.

• Read carefully through laboratory exercise manual.

ll

θ

ψ

px

py

pz

Load

Traverse

Cart position Control
directions

Figure 2 Crane layout and coordinates. The cart position, i.e., the pivot point of
the crane load, can be moved in the (px, py)-plane. The control objective is to keep
the load rotating in a circular orbit while having the cart at a certain position.

1. Introduction

In this laboratory exercise we will design both LQ and LQG controllers for a
crane with a load. The control objective is to make the load follow a circular

orbit and at the same time keep the cart close to a reference position. Different
design properties will be evaluated using Matlab/Simulink and a satisfying
design will be tried on a real crane.

2. Physical Modelling of the Crane

In the use of Linear Quadratic Gaussian (LQG) control, we design the state
feedback and Kalman filter using a model of the process. The more accurate
model, the better control we get.

Modelling of the crane and load can be done using Lagrange mechanics. In-
troduce the following system coordinates, as in Figure 2,

• cart position px(t), py(t), pz(t)

• load angles θ(t) and ψ(t).

Assuming that the load movements do not affect the position of the cart1,
gives the following non-linear equations of motions

2lθ̇(t)ψ̇(t) cos θ(t) + p̈y(t) cosψ(t)− p̈x(t) sinψ(t) + lψ̈(t) sin θ(t) = 0

lθ̈(t)−
1

2
lψ̇2(t) sin 2θ(t) + g sin θ(t) + p̈y sinψ(t) cos θ(t)

+ p̈x(t) cosψ(t) cos θ(t) = 0.

1When is this almost true? What approximations have we done?

1

The LQG control framework assumes a linear time-invariant model of the
system, therefore we need to linearize our equations. Assuming that we want
the cart to be positioned at the origin of our coordinate system, the specified
trajectory can be expressed using the system coordinates and its derivatives
as

py(t)

ṗy(t)

px(t)

ṗx(t)

θ(t)

θ̇(t)

ψ(t)

ψ̇(t)

=

0

0

0

0

θo

0

ωot

ωo

.

For a certain load length l and angle θo we must have a certain rotational
velocity2, i.e., ωo. This constraint can be derived using simple physics to

ωo =

√

g

l cos θo
, (1)

where g is the gravitational constant. Thus, the linearization trajectory de-
pends on this constraint, and can not be chosen arbitrarily.

Linearizing the equations of motions around the trajectory and letting the
accelerations in px- and py-directions be control inputs, gives a time-varying
system. The states are the deviations from the nominal trajectory, i.e.,

∆ṗy

∆p̈y

∆ṗx

∆p̈x

∆θ̇

∆θ̈

∆ψ̈

=

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 s1 0 s2

0 0 0 0 0 s3 0

∆py

∆ṗy

∆px

∆ṗx

∆θ

∆θ̇

∆ψ̇

+

0 0

0 1

0 0

1 0

0 0

−b cosψ(t) −b sinψ(t)

a sinψ(t) −a cosψ(t)

∆ux

∆uy

 , (2)

2You might want to try this on your own. Try to make a pendulum go in a circular orbit
with a constant angle θo and at the same time increase the rotational velocity.

2

where ψ(t) = ωot and

s1 = ω2

o cos(2θo)−
g

l
cos θo a =

1

l sin θo

s2 = ωo sin 2θo b =
cos θo
l

s3 = −2ωo cot θo.

You can recognize e.g., the double integrators for the positions and velocities
in px- and py-directions, and the integrator for θ(t) in the system matrix.

Since we need a linear time-invariant system to design a standard LQ con-
troller, we introduce a coordinate system that rotates with the load. The model
can be transformed into these coordinates using the state-dependent input
transformation matrix P (ψ(t)) and state transformation matrix T (ψ(t)),

P (ψ(t)) =

(

cosψ(t) − sinψ(t)

sinψ(t) cosψ(t)

)

,

T (ψ(t)) = blockdiag

0 − sinψ(t) 0 − cosψ(t)

cosψ(t) 0 − sinψ(t) 0

sinψ(t) 0 cosψ(t) 0

0 cosψ(t) 0 − sinψ(t)

, I3

.

Applying these transformations gives a time-invariant system

ẋ(t) = Ax(t) +Bu(t), (3)

with

A =

0 0 0 −ωo 0 0 0

0 0 −ωo 1 0 0 0

−1 ωo 0 0 0 0 0

ωo 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 s1 0 s2

0 0 0 0 0 s3 0

, B =

−1 0

0 0

0 0

0 1

0 0

−b 0

0 −a

.

This system will be used in the design of an LQ/LQG controller in the labo-
ratory exercise.

3

Home assignment 1: State and input transformations

Show by, for example, using Matlab symbolic toolbox, that applying T (ψ(t))
and P (ψ(t)) on the time-varying linearized system (2), we get the time
invariant system in Eq. (3).

Hint: If we have the system

ẋ(t) = A(t)x(t) +B(t)u(t)

and apply z(t) = T (t)x(t) and u(t) = P (t)ũ(t) then we get

ż(t) =
(

Ṫ (t) + T (t)A(t)
)

T−1(t)z(t) + T (t)B(t)P (t)ũ(t).

Matlab example: Consider the system

ẋ(t) =

(

cos 2ωt − sin 2ωt

− sin 2ωt − cos 2ωt

)

x(t) +

(

1 0

0 1

)

u(t)

with the transformation matrices

T (t) =

(

cosωt − sinωt

sinωt cosωt

)

, P (t) =

(

cosωt sinωt

− sinωt cosωt

)

.

The transformations are done i Matlab as follows,
>syms w t real; %define w t as symbolic variables, real.

>A = [cos(2*w*t) -sin(2*w*t); -sin(2*w*t) -cos(2*w*t)];

>B = eye(2);

>T = [cos(w*t) -sin(w*t);sin(w*t) cos(w*t)];

>P = [cos(w*t) sin(w*t);-sin(w*t) cos(w*t)];

>Ahat = simple((diff(T,t)+T*A)/T)

>Bhat = simple(T*B*P)

which gives
>Ahat = [1 -w; w -1]

>Bhat = [1 0; 0 1]

2.1 Interpretation of States and Control Signal

Now that we have a linear time-invariant system, it is a good idea to interpret
the states. Let us first concentrate on the four states, x1(t), . . . , x4(t). Using
the structure of T (ψ(t)) we can write

x2(t)

x3(t)

=

cosψ(t) − sinψ(t)

sinψ(t) cosψ(t)

∆py(t)

∆px(t)

x1(t)

x4(t)

 =

− sinψ(t) − cosψ(t)

cosψ(t) − sinψ(t)

∆ṗy(t)

∆ṗx(t)

 .

These expressions are linear transformations using rotational matrices. Thus,
x2(t) and x3(t) are interpreted as deviations from the nominal trajectory in the
tangential and normal direction, respectively, and x1(t) and x4(t) are velocities
in opposite normal and tangential direction, respectively, see Figure 3 for a
graphical illustration.

4

∆px

∆py

ψ(t)ψ(t)

x2
x3

∆ṗx

∆ṗy

x4

x1

LoadLoad

Figure 3 Graphical interpretation of coordinate transformations for positions and
velocities in px- and py-directions.

Since T (ψ(t)) has the identity matrix in the bottom right corner the last three
states remain the same

x5(t) = ∆θ(t)

x6(t) = ∆θ̇(t)

x7(t) = ∆ψ̇(t).

2.2 Summary of states

From the discussion above, the states of the linear time-invariant system that
we are to control are

x1(t)

x2(t)

x3(t)

x4(t)

x5(t)

x6(t)

x7(t)

=

velocity deviation

position deviation

position deviation

velocity deviation

θ-deviation

θ̇-deviation

ψ̇-deviation

These states will be available both in the simulation model and in the hardware
implementation.

Home assignment 2: Interpretation of control signals

Express in words and a simple picture, analogous to Figure 3, an interpretation
of the control signal transformation

(

∆ux

∆uy

)

= P (ψ(t))

(

u1(t)

u2(t)

)

.

Hint: Consider e.g. (u1(t) u2(t))
T = (1 0)T . What kind of accelerations

(∆ux(t) ∆uy(t))
T
will this correspond to?

5

3. Process Characteristics

In essentially all control problems, one must get familiar with the process
dynamics before attempting to control it. In this section, we will build a model
of the process, and investigate its characteristics by simulation.

Assignment 1: Constructing and getting to know the system

1. Download laboratory files lab3 files.zip from the course homepage,
http://www.control.lth.se/course/FRTN10/Multivariable-Control-

Laboratory-Exercises.html.

2. Start Matlab by typing matlab in a terminal.

3. Run start lab.

4. In the opened Simulink model LQGlab.mdl we have access to the time-
invariant state x(t). Make sure that you understand the different vari-
ables in the init crane-file. In this file, you will set initial values for the
crane, set linearization trajectory, and design LQ and LQG controllers.

5. Try different initial values on the crane by setting them in the init crane-
file. Let the length of the load be 0.3 m, which is the same as on the real
crane, and use θo(t) = 0.3 rad to specify a desired trajectory. What hap-
pens to the x(t)-coordinates? Use the scopes to view the states. Note: We

can never have the pendulum hanging straight down since this gives a sin-

gular model, thus we must always have theta 0 init and psi dot init

> 0

• What happens if we initialize the crane to follow the specified tra-
jectory of θo(t) = 0.3?

• Compare the load angle θ(t) to x5(t). What is the relation? Can
θ(t) and x5(t) be negative?

• Verify the physical constraint in Eq. (1).

6. The linear time-invariant system in Eq. (3) can be loaded to workspace
by using the command [A, B] = getAandB(l 0 init, theta 0, psi dot 0),
see the init crane-file. Compute the poles of the system. What is the
process characteristics? Can you relate any of the poles to physical pa-
rameters?

4. Linear Quadratic (LQ) Control

Now that we are familiar with the process, it is time to control it. We want it
to follow the specified trajectory regardless of what the initial conditions are.
That is, all states x(t) should be asymptotically stable. The control strategy
will of course be LQ-control!

We will assume that all states of the system are measured and equal to the
outputs, that is, we have the model

ẋ(t) = Ax(t) +Bu(t)

y(t) = x(t),

6

where we assume that the full state x(t) can be measured. The system matrices
were defined in Eq. (3). The cost function we are minimizing is the familiar

J =

∞
∫

0

(

xT (t)Q1x(t) + uT (t)Q2u(t)
)

dt. (4)

Home assignment 3: Control signal weighting

If we have (umax
1

, umax
2

) as maximum allowed values of the control signals,
formulate a weighting matrix Q2 such that the control signal part of the LQ
cost function is

‖u(t)‖Q2
=

∞
∫

0

(

(

u1(t)

umax
1

)2

+

(

u2(t)

umax
2

)2
)

dt.

Assignment 2: LQ control of crane in simulation

Throughout this assignment we want the crane to follow a trajectory with

θo = 0.3 rad and ωo =
√

g
l cos θo

. The length of the load should be 0.3 m, i.e.,

the same as for the real crane.

1. Design a state-feedback controller using LQ-technique by use of the Mat-
lab function lqr, see init crane-file. Use equal weight on outputs and
control signals, i.e., Q1 = I and Q2 = I.

Hint: Use help lqr in Matlab to figure out how the function works.

Consider also the command diag.

• Is the closed loop stable? What guarantees do we have?

• Plot the amplitude of the closed loop, bodemag(ss(A-B*L, B, eye(7),

0)). Do we have any resonance peaks in the closed loop?

2. Implement the state feedback using the Simulink model in Assignment 1,
use the gain block in the Math library. Set the gain block to “matrix
times vector”-mode. Try different initial values of the crane. Use scopes
in Matlab to display different signals.

3. Try changing the weights on the control signals, try e.g. Q2 = 0.001I
and Q2 = 1000I.

• What are the implications on the outputs?

• What happens to the closed loop poles?

• Any practical aspects to consider? Hint: Check control signal.

4. Tuning an LQ-controller involves weighting the outputs and control sig-
nals relative to each other. Try weighting the outputs with Q1 = 10I
and the control signals with Q2 = 0.1I and compare it with Q1 = 1000I
and Q2 = 10I, respectively. What is the difference? Why?

5. Turn on the measurement noise by setting the parameter noise variance

to e.g., 10−5 in the crane init-file. What happens when you change the
weights on the control signals? Check the control signals.

7

6. As you can see on the real crane, we can not move the cart a great
distance, and the motors have limited acceleration capacity. With the
initial conditions that the load is in a circular orbit with angle θ = 0.2 rad

and ω =
√

g
l cos θ

rad/s, design a controller that fulfills the following

specifications when the desired trajectory has θo = 0.3 rad and ωo =
√

g
l cos θo

rad/s.

(a) The cart should not accelerate faster than 0.3 m/s2 due to physical
limitations. Remember that the control signals are accelerations.

(b) The cart should not move more than 2 cm in either direction, i.e.,
px(t) and py(t) should stay within ±0.02.

(c) We should reach the desired trajectory in approximately 6 s.

To think about at the design

(a) Remember what the different states x(t) are.

(b) Home assignment 3.

(c) We are not so interested in the load having correct rotational ve-
locity. It will come naturally from physical constraint if we follow
rest of the trajectory. Thus, we should use a very small weight on
x7.

Assignment 3: LQ control of real crane.

After the LQ-design gives acceptable control of the simulated crane, it will
be tried on the real process. Running the crane requires using a computer
to measure signals, compute control signals, and actuate the motors. This
will be done in a sampled fashion. Hence our controller must be a sampled
version at this stage, i.e., the discrete time equivalent of the continuous time
version taught in the course. Discretizing a linear system is a straightforward
procedure, and is a part of the course Real Time Systems3 (FRTN01) given
at the department. As the design is tried on the real crane, we change to the
discrete time version. This will not affect the result of the control, nor the
interpretation of signals.

1. Change the design to discrete time by using lqrd instead. Use sampling
period 0.010 s. See crane init.

2. Change to the discrete time controller in the Simulink model.

3. Switch to the crane hardware-block from the library crane lib and run
your controller on the real crane by help from the laboratory assistant.
Do not forget to run init hardware.m.

Do not push the on-button of the crane if the Simulink model

is running. The control signal might be large which can dam-

age the crane. Always reset the crane by switching the power

supply on and off before a simulation is begun.

3http://www.control.lth.se/course/FRTN01

8

x

x̂

y

z

+

ẋ = Ax+Bu+ v1

˙̂x = Ax̂+Bu+K(y − Cx̂)

M

C

u

v1

v2

−L

Controller

Figure 4 Control structure when using an LQG controller on a process. The
variable y is the measurements, z controlled variables, x states of the process, x̂

estimated states, u control signal, v1 process noise and v2 measurement noise.

5. Linear Quadratic Gaussian (LQG) Control

In many control problems, you do not have access to all the states of the
system. This can be due to e.g., hard to position sensors, not physically possible
to measure the state or the state has no physical interpretation as in the case of
using an experimentally estimated model. In any of these cases, the Kalman
filter might be the solution and the control structure will be as shown in
Figure 4. In this part of the laboratory exercise we assume that the measured
states might not be the same as the ones we want to control. Thus, the process
is described as

ẋ(t) = Ax(t) +Bu(t) + v1(t)

y(t) = Cx(t) + v2(t),

where y(t) are the measurements. We also have process noise v1(t) acting on
the states and measurement noise v2(t) acting on the measurements. The cost
function we are trying to minimize is the same as in the LQ case, see Eq. (4),
but now we must extend the controller to include a Kalman filter, i.e., the
controller is

˙̂x = Ax̂+Bu+K(y − Cx̂)

u = −Lx̂.

9

Home assignment 4: Kalman filter error dynamics

Answer the following questions.

1. Explain in words what a Kalman filter does. What are its inputs and
outputs?

2. Assume that we have the system

ẋ(t) = Ax(t) +Bu(t) + v1(t)

y(t) = Cx+ v2(t).

What is the state estimation error dynamics for the corresponding
Kalman filter?

Home assignment 5: Kalman filter noise dependence

Try to figure out, without calculations, the answers to the following questions,

1. What happens to the Kalman filter when we increase the intensity of
the measurement noise? Does the Kalman filter put more trust in the
model or in the measurements?

2. If the Kalman filter is changed so that it trusts the measurements less,
how is then the cut-off frequency (bandwidth) of the controller changed?

Home assignment 6: System structure and noise interpretation

In the LQG-design, we are assuming that only three states of the system
are measured, x2(t), x3(t), and x5(t). Because of limitations on the physical
process, we must be able to have weights on all states in the state-feedback
design.

1. Write the model of the process in state-space form

ẋ(t) = Ax(t) +Bu(t) + v1(t)

y(t) = Cx(t) + v2(t),

assuming that each state and measured output has unique noise signals
acting on them.

2. Interpret the noise signals vi(t), i = 1, 2. What do they model?

3. Assuming all noise signals are white and uncorrelated, what are the
structures of the intensity matrices R1 and R2?

Assignment 4: LQG control of crane in simulation.

Throughout this assignment we want the crane to follow a trajectory with

θo = 0.3 rad and ωo =
√

g
l cos θo

. The length of the load should be 0.3 m,

i.e., the same as for the real crane. It is now assumed that only x2(t), x3(t)
and x5(t) are measured. It might be helpful to use Figure 4 as support for
discussion.

1. Design a Kalman filter using the function kalman on the system in Home
assignment 6, see init crane. Begin with setting all noise signals white
with intensity 1, i.e., R1 = I and R2 = I. An implementation of the

10

Kalman filter and state feedback can be found in crane lib. Remember
that the control signal input to the Kalman filter should be the same as
the control signal input to the process.

Implement the Kalman filter in the Simulink model. Simulate the system
with different initial values without using any feedback, e.g. let the load go
in a circular orbit not equal to the desired trajectory with control signals
equal to 0. Does the Kalman filter converge to correct state-values?

Hint: Use the subsystem “Plot system” found in the library crane lib.

This subsystem takes the true state vector x and estimated state vector

x̂ and outputs the pairs (xi(t), x̂i(t)), i = 1, . . . , 7 in scopes.

2. Now try to change the measurement noise intensity R2, try e.g., R2 =
0.01I and R2 = 100I.

• Does the convergence property change? Explain!

• What happens to the error dynamics? Any similarities to the pro-
cess characteristics? Explain! Look at the Kalman filter gain. Any
conclusion about desired gain?

3. Try adding noise to the measurements by setting noise variance to
10−5 in init crane. Investigate the property of changing R2 as above.
Try different initial values of the crane.

• Does the Kalman filter converge to correct values?

• Any conclusion about desired gain? Compare to above. Trade-off?

4. Plot the Bode diagram (only amplitude) of the transfer functions from
measurements to their filtered equivalents from the Kalman filter. How
do they depend on the measurement noise? Can you relate the shape to
the process characteristics?

Hint: The plots can be generated from the Kest-object created when
running kalman as follows

bodemag(Kest(1:3,3:5));grid

5. In reality, the model and process do not behave exactly the same due to
e.g. parameter estimation errors in the model. Change the length of the
load by setting l error to e.g. 0.03. This will set the crane load length
to l + 0.03, that is, our model will have an error of 10% in the length
parameter.

• How do you model this uncertainty in l? What linearized states
depends most on l?

• What happens to the estimations? Do they converge to correct val-
ues? What is the Kalman filter trying to do?

6. Connect the control signal from the controller to the process and the
Kalman filter, that is, now we have feedback. Set the error in load length
to 0. Simulate the closed loop system.

• Does the controller stabilize the system?

• What is the order of the controller designed above? What are its
states?

• What is the controller transfer function Fuy(s), (y(t) → u(t)) ex-
pressed in Kalman filter gain K and state-feedback gain L?

11

7. Plot the magnitude in a Bode diagram from measurements to control
signal. How does the bandwidth of the controller depend on measurement
noise? Try again e.g., R2 = 0.01I and R2 = 100I. Compare to the above
results.

Hint: Use bodemag(lqgreg(Kest, L));grid

Assignment 5: LQG control of real crane.

1. Figure out good settings of the weight matrices Q1 and Q2 and intensity
matrices R1 andR2 by experience from the LQ-experiment and the LQG-
control of the simulated crane.

2. Check with Simulink model that we have reasonable control when we
start the simulation with the load in a circular orbit with θ = 0.2 rad
and ωo =

√

g
l cos θ

. You do not have to fulfill the specifications from the

LQ control problem.

3. Change the design to discrete time by using lqrd and kalmd instead, see
init crane. Change the Simulink model so that discrete time Kalman
filter and state feedback are used, these are found in crane lib.

4. Switch to the crane hardware-block from the library crane lib. Run
your controller on the real crane by help from the laboratory assistant.
Do not forget to run init hardware.m.

Do not push the on-button of the crane if the Simulink model

is running. The control signal might be large which can dam-

age the crane. Always reset the crane by switching the power

supply on and off before a simulation is begun.

A. Files for Simulation/Experiment

crane lib.mdl Contains the simulation model, hardware model, input signal
transformation and state transformation block.

LQGlab.mdl Contains a simulation model of the linearized time-invariant
system, created by interconnecting the non-linear model, linearization,
and the two transformation blocks. In this model, the LQ/LQG con-
trollers are implemented.

init crane.m Initialization and design file for the crane and controllers. All
parameters will be set in this file.

init hardware.m Sets up hardware parameters for experiments on real crane.
Initializes velocity controllers.

getAandB.m Gives the system and input matrix of the linearized time-
invariant system for a certain crane initialization.

start lab.m Starts Simulink, opens LQGlab.mdl and crane init.m.

12

