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1. Introduction

The aim of this laboratory exercise is to study some different aspects of multi-
variable control systems. The ideas are illustrated on a quadruple-tank process
with two inputs and two outputs. The process can be modified to have different
dynamics: In one configuration the process is minimum phase, and in another
configuration the process is nonminimum phase. In the lab we will study the
pairing of inputs and outputs, interaction between the control loops, decou-
pling, and fundamental limitations introduced by a nonminimum phase zero.

Preparations

Solve problems 1-3 in exercise session 7. Read this lab manual carefully as well
as the lecture notes on fundamental limitations. At the beginning of the lab,
you should also be able to discuss the points below:

Discussion points

1. Give real-world examples of systems where the step response
initially goes in the wrong direction.

2. In which of the two possible process configurations is it eas-
ier to control the level of the lower tanks? Can you give an
intuitive explanation?

3. Consider the configuration where most of the water enters
the upper tanks. Simultaneously increase the flow through
pump 1 and decrease the flow through pump 2 by the same
amount. What short-term effects do you expect? What long-
term effects do you expect?

4. Imagine a configuration where the flow from each pump is
divided 50–50, i.e. γ = 0.5. Can you achieve different levels
in the lower left and right tanks?

5. We start with non-linear equations but end up with a linear
model. What happened in between? Where will the linear
model be a good approximation of the non-linear one?

1Written by Anton Cervin, latest updated 2013-10-08 by Josefin Berner
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Figure 1 The quadruple-tank process.

2. The Process

The quadruple-tank process is shown in Figure 1. The goal is to control the
water level in the lower tanks using the two pumps.

The control inputs u1, u2 are the voltages (0–10 V) applied to the two pumps.
The control outputs y1, y2 are voltages (0–10 V) representing the levels in the
lower tanks.

Nonlinear Model

In this section, a nonlinear model of the quadruple-tank process is derived.
For each tank i = 1 . . . 4, mass balance and Bernoulli’s law give that

Ai

dhi
dt

= −ai
√

2ghi + qinj

where Ai [cm2] is the cross-section of the tank, hi [cm] is the water level,
ai [cm

2] is the cross-section of the outlet hole, g [cms−2] is the acceleration of
gravity, and qini

[cm3s−1] is the inflow to the tank.

Each pump j = 1, 2 gives a flow proportional to the control signal,

qpumpj = kjuj

where kj [cm3V−1s−1] is a pump constant. The flows from the pumps are
divided according to the two parameters γ1, γ2 ∈ [0, 1]. The flow to Tank 1
is γ1k1u1 and the flow to Tank 4 is (1 − γ1)k1u1. Symmetrically, the flow to
Tank 2 is γ2k2u2 and the flow to Tank 3 is (1− γ2)k2u2.

The measured level signals are y1 = kch1 and y2 = kch2, where kc [Vcm−1] is
a measurement constant.
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Considering the flow in and out of all tanks simultaneously, the dynamics of
the quadruple-tank process are given by

dh1
dt

= −
a1
A1

√

2gh1 +
a3
A1

√

2gh3 +
γ1k1
A1

u1

dh2
dt

= −
a2
A2

√

2gh2 +
a4
A2

√

2gh4 +
γ2k2
A2

u2

dh3
dt

= −
a3
A3

√

2gh3 +
(1− γ2)k2

A3

u2

dh4
dt

= −
a4
A4

√

2gh4 +
(1− γ1)k1

A4

u1

Stationary Points For a stationary operating point (h0
1
, h0

2
, h0

3
, h0

4
, u0

1
, u0

2
),

the equations above give that

a3
A3

√

2gh0
3
=

(1− γ2)k2
A3

u02

a4
A4

√

2gh0
4
=

(1− γ1)k1
A4

u01

(1)

and thus
a1
A1

√

2gh0
1
=

(1− γ2)k2
A3

u02 +
γ1k1
A1

u01

a2
A2

√

2gh0
2
=

(1− γ1)k1
A4

u01 +
γ2k2
A2

u02

(2)

If we chose stationary levels in the lower tanks, h0
1
, h0

2
, we can obtain the

stationary control signals u0
1
, u0

2
by solving the linear system of equations (2).

The stationary levels in the upper tanks, h0
3
, h0

4
, are then obtained from (1).

Linear Model

Let ∆ui = ui − u0i , ∆hi = hi − h0i , and ∆yi = yi − y0i . Introducing
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and linearizing around a stationary point gives the linear system
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where

Ti =
Ai

ai

√

2h0i
g

The transfer matrix from u to y is given by

G(s) =































γ1c1
1 + sT1

(1− γ2)c1
(1 + sT1)(1 + sT3)

(1− γ1)c2
(1 + sT2)(1 + sT4)

γ2c2
1 + sT2































where c1 = T1k1kc/A1 and c2 = T2k2kc/A2.

Multivariable Zeros

As shown in the preparatory exercises, the zeros of G(s) are given by the
equation

(1 + sT3)(1 + sT4)−
(1− γ1)(1− γ2)

γ1γ2
= 0

The system is found to be minimum phase (i.e., all zeros are in the left half
plane) if 1 < γ1 + γ2 ≤ 2 and nonminimum phase (i.e., at least one zero is in
the right half plane) if 0 ≤ γ1 + γ2 < 1.

Relative Gain Array

The relative gain array (RGA) is a useful tool for determining what outputs
should be controlled by what inputs for decentralized controllers.

As shown in the preparatory exercises, the RGA of G(0) is given by








λ 1− λ

1− λ λ









where λ = γ1γ2/(γ1 + γ2 − 1).

Process Data

The quadruple tank has approximately the following physical constants:

Ai = 4.9 cm2

ai = 0.03 cm2

ki = 1.6 cm3/V

kc = 0.5 V/cm

g = 981 cm/s2

The flow from each pump is divided so that roughly 70 % goes into one tank
and 30 % into the other. In the minimum phase case, the 70 % goes into the
lower tanks and we have γ1 = γ2 = 0.7. In the nonminimum phase case, the
30 % goes into the lower tanks and we have γ1 = γ2 = 0.3.

The operating point in the lower tanks are chosen as h0
1
= h0

2
= 10 cm. In the

minimum phase case the stationary levels in the upper tanks are calculated to
be h0

3
= h0

4
= 0.9 cm and in the nonminimum phase the stationary levels are

h0
3
= h0

4
= 4.9 cm. In both cases, the stationary control signals are u0

1
= u0

2
=

2.6 V.
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3. The Lab Interface

The controllers are designed and tested in Matlab/Simulink. There is one
Simulink model for simulation quadtank simulated and another one for ex-
periments on the real process quadtank real. There is also a model for man-
ually driving the physical process quadtank real manual.

The Simulink model for the simulated process is shown in Figure 2. The Quad-

tank block contains the non-linear model of the quadruple tank process. Click-
ing on the block allows you to specify γ1 and γ2 for the process.

Before a simulation, you must define the two controllers C1 and C2 in the
workspace. In the lab, the controllers will be of either PI or PID type. The con-
trollers are conveniently designed using the commands designpi and designpid
(use help on them).

Run the script define process to define the two systems Gmin and Gnonmin

representing the linear process in the minimum phase and nonminimum phase
case respectively.

It is also possible to specify two decoupling matrices W1 and W2 (see Sec-
tion 5.3). The default choice is W1 = W2 = I (the identity matrix), i.e. no
decoupling.

y3,y4

y1,y2

u1,u2

r2

r1 W2 W1

v1

v2

y1

y2

y3

y4

Quadtank

C2

C1

Figure 2 Simulink model quadtank simulated.

4. Control in the Minimum Phase Case

We will start by controlling the process in the minimum phase case, where most
water goes directly into the lower tanks. For simulations, make sure to enter
the correct γ-values into the mask of the Quadtank block. For experiments on
the physical process, make sure that it is configured so that 70 % of the flow
from Pump 1 goes into Tank 1, and that 70 % of the flow from Pump 2 goes
into Tank 2. This is achieved with the following valve configuration: AV1, AV2
and BV1 should be pulled out while BV2 should be pushed in (from the users
perspective). Also make sure valves AV3, AV4, BV3, BV4 and V5 are all pushed
down.
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4.1 Choice of Control Structure and Design

Exercise 1 Have a look at the transfer matrix Gmin in Matlab and also
compute the zeros of the system:

>> Gmin

>> zero(minreal(ss(Gmin)))

Also compute the RGA of Gmin(0):

>> G0 = evalfr(Gmin,0*i)

>> G0.*transpose(inv(G0))

Do the results agree with the preparatory exercises? ⋄

Now compute the RGAmatrix for higher frequencies, say ω = 0.1, 0.5, 1, 10, 100
rad/s, that is, we control the closed loop system faster and faster. How does
the RGA matrix change with increasing frequency?

The RGA analysis suggests that we should control Tank 1 with Pump 1 and
Tank 2 with Pump 2. If we ignore the cross-terms in the transfer matrix, we
see that the problem is reduced to controlling the two single-tank processes

Gmin11(s) =
γ1c1

1 + sT1

, Gmin22(s) =
γ2c2

1 + sT2

From the basic course we know that we can control a single-tank process
without stationary error using a PI controller. The resulting control structure
is shown in Figure 3.

r1

r2

e1

e2

u1

u2

y1

y2

−

−

Σ

Σ PI

PI

Gmin

Figure 3 The control structure in the minimum phase case.

We will use pole-placement to design the PI controllers in the two loops. The
desired characteristic polynomial of each closed loop is specified as

s2 + 2ζωs+ ω2

4.2 Experiments

Exercise 2 Make sure that the Simulink models agree with the control
structure described above. Double-click on the process block in Simulink to
set the value of γ1 and γ2. Use the command designpi to design the two PI
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controllers C1 and C2 for the subsystems Gmin11 and Gmin22. Use ζ = 0.7 and
experiment with different ω. Try the controller in simulations, and, when it
works well, also on the real process.

Set the step time of step block R1 to 50 and R2 to 100 and the simulation stop
time (found in the Simulation menu under Configuration Parameters) to 150.
If you have difficulties to find a controller which settles within these times, you
may increase them. However, have in mind that this implies longer experiment
durations.

If you try large values of ω, say ω > 0.5, you may see large overshoots in the
water levels and in some cases even combinations of over- and undershooting.
Explain this behaviour! How can you eliminate this undesired phenomena?
Hint: Study the plot of the control signals.

Can you notice any cross-coupling in the system response? How fast can you
make the system? What limits the achievable performance? ⋄

4.3 Estimating γ

The γ-values given in this manual are from nominal construction data and
values of individual processes do differ. If you experience differences between
simulations and real process experiments, this might be a possible cause. The
following steps suggest an experiment for identifying γ1 and γ2.

1. Push up AV3, AV4, BV3, BV4 and down V5 to close all tank outlets. Use
either of the two following configurations to choose operating mode (min-
imum or nonminimum phase).

(a) AV1, AV2 and BV1 pulled out, BV2. pushed in

(b) AV1, BV1 and BV2 pulled out, AV2 pushed in.

2. Open quadtank real manual and start a simulation

3. Use the slider gains to fill the tanks (how large control signal do you
want to use?).

4. Stop the simulation when the tanks that fill fast have reached ≈ 160
mm.

5. Measure the water levels A1, A2. B1 and B2.

6. Use

γ1 =
A2

A2 +B1
, γ2 =

B2

B2 +A1

After this is done, do the following, in order to use your identified values.

• Edit define process and enter your measured values for gamma1 and
gamma2 under either % Minimum phase case or % Nonminimum phase

case.

• Enter your values in the mask of the Quadtank block of quadtank simulated

• Rerun define process and the synthesis script for C1 and C2.
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5. Control in the Nonminimum Phase Case

We will now try to control the process in the nonminimum phase case, where
most water goes to the upper tanks. Youmust reconfigure the physical process
such that 70 % of the flow from Pump 1 goes into Tank 4, and that 70 % of
the flow from Pump 2 goes into Tank 3. This is achieved with the following
valve configuration: AV1, BV1 and BV2 should be pulled out while AV2 should
be pushed in (from the user’s perspective).

5.1 Choice of Control Structure and Design

Exercise 3 Take a look at the transfer matrix Gnonmin in Matlab. Com-
pute the zeros of the system. Are they minimum phase? Also compute the
RGA in stationarity, i.e. Gnonmin (0), as well as for some higher frequencies,
i.e. Gnonmin (ωi) for say ω = 0.02, 0.05, 0.1, 0.2, 1, 10. Do the results agree with
the preparatory exercises? Does the RGA for higher frequencies agree with
your intuition? ⋄

The RGA analysis suggests that we should control Tank 1 with Pump 2 and
Tank 2 with Pump 1. If we ignore the cross-terms in the transfer matrix, the
problem is reduced to controlling the two double-tank processes

Gnonmin 12 =
(1− γ2)c1

(1 + sT1)(1 + sT3)
, Gnonmin 21 =

(1− γ1)c2
(1 + sT2)(1 + sT4)

From the basic course we know that we can control a double-tank process
without stationary error using a PID controller. The resulting control structure
is shown in Figure 4 with W2 = I and W1 chosen according to your RGA
reasoning.

r1

r2

e1

e2

ẽ1

ẽ2

u1

u2

ũ1

ũ2

y1

y2

−

−

Σ

Σ PID

PID

GnonminW1W2

Figure 4 The control structure in the nonminimum phase case. Note the internal
structure of the W1 and W2 blocks (dashed).

Again, we will use pole placement to design the PID controllers in the two
loops. The desired characteristic polynomial of each closed loop is specified as

(s+ αω)(s2 + 2ζωs+ ω2)

5.2 Experiments

Exercise 4 Modify the matrix W1 according to the RGA reasoning.
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Set the step time of step block R1 to 100 and R2 to 200 and the simulation stop
time to 300. If you have difficulties to find a controller which settles within
these times, you may increase them. However, bear in mind that this implies
longer experiment durations. Also, don’t forget to change the values of γ1 and
γ2 in the simulated process block as well.

Use the command designpid to design the two PID controllers C1 and C2.
Should Gnonmin 12 or Gnonmin 21 be used for designing C1? Use ζ = 0.7, α = 1,
and experiment with different values of ω. Try the controller in simulations,
and, when it seems to work well, also on the real process.

Can you see the nonminimum phase behavior of the system in the step re-
sponses? How fast can you make the system? What limits the achievable per-
formance? (Warning: The process is much slower and more difficult to control
in this setting. A step response can take several minutes.) ⋄

5.3 Decoupling

It is often possible to reduce the cross-coupling in a multivariable system by a
suitable change of coordinates. The idea is to introduce new variables ỹ = W2y
and ũ = W−1

1
u such that the new system

G̃(s) = W2G(s)W1

becomes as diagonal as possible. It is then possible to design a decentralized
controller

ũ =









C1 0

0 C2








ẽ

for the decoupled system. The control structure is shown in Figure 5.
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ẽ1

ẽ2
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−
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Figure 5 Decoupling in the nonminimum phase case.

Since the process has G11 = G22 and G12 = G21 if γ1 = γ2, choosing

W1 = W2 =









1 1

1 −1









will result in a complete diagonalization of the system. (Choosing W1 and W2

may be non-trivial in the general case). Notice that ỹ1 corresponds to the sum
of the lower tank levels, while ỹ2 corresponds to the difference of the lower
tank levels.
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Exercise 5 Note: If you have estimated γ1 and γ2 and they are not equal

you should make an average and have them equal in this part of the lab.

Enter the matrices W1 and W2 in Matlab and then compute the transformed
system G̃:

>> Gtilde = minreal(W2*Gnonmin*W1)

Notice that the minimum phase dynamics are collected in G̃11, while the non-
minimum phase dynamics are collected in G̃22. It should thus be harder to
control ỹ2 than ỹ1. Does this agree with your intuition? ⋄

Exercise 6 Design two PID controllers for the systems G̃11 and G̃22. It
is probably possible to achieve higher bandwidth in the first loop than the
second one (why?).

Try the controller in simulations and also on the real process. Do you get
better responses than you did in Exercise 4?

The system should be perfectly decoupled but you can probably still see some
coupling in the graphs. Why? Hint: What is decoupled? Modify the simulink
simulation model and verify that the system is indeed perfectly decoupled. ⋄
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