
Limitations: Controllability [from lec 6]

U

a

X1

X2

1

s+ 1

1

s+ 2

System ẋ =
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State x2 is uncontrollable for

a = 0 and "hard to control" for

small values of a.
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[
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=

[

1 −1
a −2a

]

Controllability gramian S

AS+ SAT + BBT = 0 =[

S = ... =

[

1
2

1
3
a

1
3
a 1

4
a2

]

Plot of
[
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[
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= 1 corresponds to what states we can reach by

∫ t1
0
pu(t)p2dt = 1.
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Lecture 7: Fundamental Limitations

Limitations from unstable poles and zeros: Intuition

A back-wheel steered bicyle?

Limitations from unstable poles and zeros: Hard proofs

Bode’s integral formula

Bode’s relation: Coupling magnitude and phase

See lecture notes and [G&L Ch. 7]
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Unstable poles — “intuitive reasoning”

An unstable pole pmakes the output signal for a bounded input

grow exponentially as ∼ ept. To stabilize this system, one has to

act fast, on a time scale proportional to ∼ 1/p.

Intuitive conclusion: Unstable poles give a lower bound on

the speed of the closed loop.
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Systems with time-delay

Assume that the plant contains a time-delay T . This means e.g.

that a load disturbance is not visible in the output signal until

after at least T time units. Of course, this puts a hard constraint

on how quickly a feedback controller can reject the disturbance!

Intuitive conclusion: Time delays give an upper bound on the

speed of the closed loop.
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Unstable zeros — "intuitive reasoning"

The step response of a system with a process zero in the right

half plane (i.e, with positive real part) goes initially in the "wrong

direction".

Intuitive conclusion: Unstable zeros give an upper bound on

the speed of the closed loop.

Why the wrong direction? Let z be a process zero in the right half

plane. If we look at the step response, call it y(t), and its Laplace

transform we get

0 = Y(z) =

∫ ∞

0

y(t) e−zt
︸︷︷︸

>0

dt

Hence, y(t) must take both positive and negative values!
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Rehearsal: Step response for non min phase system

How did we do in the basic course (Reglerteknik AK) to show

that the step response went in the “wrong direction” for systems

with one zero in the RHP?

Use the “Initial value theorem” (see collection of formulae)

lim
s→∞

sF(s) = lim
t→0
f (t)

and apply it to the output derivative ẏ(t).

(That is, look at sign of ẏ(0+) and compare it to sign of final

value limt→∞y(t)
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Mini-problems

1 Give examples of systems that initially respond in the

“wrong” direction.

2 Which of the intuitive arguments can be applied to

an inverted pendulum?

a rear wheel steered bicycle?
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Bike example

A (linearized) torque balance for a bicycle can be approximated

as

J
d2θ

dt2
= m�{θ +

mV0{

b

(

V0β + a
dβ

dt

)
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Bike example, cont’d

J
d2θ

dt2
= m�{θ +

mV0{

b

(

V0β + a
dβ

dt

)

where the physical parameters have typical values as follows:

Mass: m = 70 kg

Distance rear-to-center: a = 0.3m

Height over ground: { = 1.2 m

Distance center-to-front: b = 0.7 m

Moment of inertia: J = 120 kgm2

Speed: V0 = 5 ms
−1

Acceleration of gravity: � = 9.81 ms−2

The transfer function from β to θ is

P(s) =
mV0{

b

as+ V0
Js2 −m�{
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Bike example, cont’d

The system has an unstable pole p with time-constant

p−1 =

√

J

m�{
( 0.4 s

The closed loop system must be at least as fast as this.

Moreover, the transfer function has a zero z with

z−1 = −
a

V0
( −
0.3m

V0

For the back-wheel steered bike we have the same poles but

different sign of V0 and the zero will thus the be unstable!

An unstable pole-zero cancellation occurs for V0 ( 0.75m/s.
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Lecture 7: Fundamental Limitations

Limitations from unstable poles and zeros: Intuition

A back-wheel steered bicyle?

Limitations from unstable poles/zeros: Hard proofs

Bode’s integral formula

Bode’s relation: Coupling magnitude and phase
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Hard limitations from unstable zeros

If the plant has an unstable zero zu, then the specification

∣
∣
∣
∣

1

1+ P(iω )C(iω )

∣
∣
∣
∣
<

2
√

1+ z2u/ω
2

for all ω

is impossible to satisfy.

10
-2

10
-1

10
0

10
1

zu
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Hard limitations from unstable poles

If the plant has an unstable pole pu, then the specification

∣
∣
∣
∣

P(iω )C(iω )

1+ P(iω )C(iω )

∣
∣
∣
∣
<

2
√

1+ω 2/p2u
for all ω

is impossible to satisfy.

10
-2

10
-1

10
0

10
1

pu
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The Maximum Modulus Theorem

The proofs will be based on the following theorem:

Suppose that all poles of the rational function G(s) have

negative real part. Then

max
Re s≥0

pG(s)p = max
ω∈R

pG(iω )p
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Sensitivity bounds from unstable zeros

It is easy to see that the sensitivity function must be equal to

one at a righ-half-plane zero s = zu of the transfer function:

P(zu) = 0 [ S(zu) :=
1

1+ P(zu)
︸ ︷︷ ︸

0

C(zu)
= 1

Notice that the unstable zero in the plant can not be cancelled

by an unstable pole in the controller, since this would give an

unstable transfer function C/(1+ PC) from measurement noise

to control input.
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Sensitivity bounds from unstable poles

Similarly, the complimentary sensitivity must be one at an

unstable pole pu:

P(pu) = ∞ [ T(pu) :=
P(pu)C(pu)

1+ P(pu)C(pu)
= 1

In this case, cancellation by an unstable zero in the controller

would give an unstable transfer function P/(1+ PC) from input

disturbance to plant output.
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Corollary of the Maximum Modulus Theorem

Suppose that the plant P(s) has unstable zeros zi and unstable

poles pj . Then the specifications

sup
ω
pWa(iω )S(iω )p ≤ 1 sup

ω

∣
∣
∣W
b(iω )T(iω )

∣
∣
∣ ≤ 1

are impossible to meet with a stabilizing controller unless

qWa(zi)q ≤ 1 for every unstable zero zi and qWb(pj)q ≤ 1 for

every unstable pole pj .

In particular, if Wa = (s+ a)/(2s) and Wb(s) = (s+ b)/(2b), it

is necessary that a ≤ mini zi and b ≥ max j pj . This proves the

statements on slide 12 & 13.
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Lecture 7: Fundamental Limitations

Limitations from unstable poles and zeros: Intuition

A back-wheel steered bicyle?

Limitations from unstable poles/zeros: Hard proofs

Bode’s integral formula

Bode’s relation: Coupling magnitude and phase
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Bode’s Integral Formula (“The water bed effect”)

For a system with loop gain L = PC which has a relative

degree ≥ 2 and unstable poles p1, . . . , pM , the following

conservation law for the sensitivity function S =
1

1+ L
holds.

∫ +∞

0

log pS(iω )pdω = π

M∑

i=1

Re(pi)

See [G&L Theorem 7.3] for details/asumptions.
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G. Stein: "Conservation of “dirt!”"

Picture from Gunter Steins Bode Lecture (1985) “Respect the
unstable”. Reprint in [IEEE Control Systems Magazine (Aug 2003)]
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Recall that the loop transfer matrix should have small norm

qP(iω )C(iω )q at high frequencies, while at low the frequencies

instead q[P(iω )C(iω )]−1q should be small.
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How quickly can we make the transition from high to low gain?
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Bode’s Relation — Approximate version

If G(s) is stable with no unstable zeros (minimum-phase), then

argG(iω 0) (
π

2

d log pG(iω )p

d logω

∣
∣
∣
∣
ω=ω0

Otherwise the argument is even smaller.

As a consequence, the decay rate of the magnitude curve must

be less than 2 at the cross-over frequency.
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Bode’s Relation — Exact version

If G(s) is stable with no unstable zeros (minimum-phase), then

argG(iω 0) =
2ω 0
π

∫ ∞

0

log pG(iω )p − log pG(iω 0)p

ω 2 −ω 20
dω

=
1

π

∫ ∞

0

d log pG(iω )p

d logω
log

∣
∣
∣
ω +ω 0
ω −ω 0

∣
∣
∣

︸ ︷︷ ︸

weighting function

d logω
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Summary: Fundamental Limitations

Limitations from unstable poles and zeros: Intuition

A back-wheel steered bicyle?

Limitations from unstable poles/zeros: Hard proofs

Bode’s integral formula

Bode’s relation: Coupling magnitude and phase
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