Course Outline

- L1-L5 Specifications, models and loop-shaping by hand
 - Introduction and system representations
 - Stability and robustness
 - Specifications and disturbance models
 - Control synthesis in frequency domain
 - Case study
- L6-L8 Limitations on achievable performance
- L9-L11 Controller optimization: Analytic approach
- L12-L14 Controller optimization: Numerical approach

Yesterdays lecture

- Introduction/examples
- Overview of course
- Review linear systems
 - Review of time-domain models
 - Review of frequencydomain models
 - Norm of signals
 - Gain of systems

Lecture 2: Stability and Robustness

- Stability
- Robustness and sensitivity
- Small gain theorem

Demo: "Inverted pendulum"

Stability is crucial

- bicycle
- JAS 39 Gripen
- Mercedes A-class
- ABS brakes

Stability of autonomous systems

The autonomous system

$$\frac{dx}{dt} = Ax(t)$$

is called <u>exponentially stable</u> if the following equivalent conditions hold

• There exist constants $\alpha, \beta > 0$ such that

$$|x(t)| \le \alpha e^{-\beta t} |x(0)|$$
 for $t \ge 0$

- ② All eigenvalues of *A* are in the <u>left half plane</u> (LHP), that is all eigenvalues have negative real part.
- 3 All roots of the polynomial det(sI A) are in the LHP.

Eigenvalues determine stability

The matrix A can always be written on the form

$$A=Uegin{bmatrix} \lambda_1 & & * \ & \ddots & \ 0 & & \lambda_n \end{bmatrix}U^{-1}. \quad ext{ Hence } e^{At}=Uegin{bmatrix} e^{\lambda_1 t} & & * \ & \ddots & \ 0 & & e^{\lambda_n t} \end{bmatrix}U^{-1}.$$

The number $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A. e^{At} decays exponentially if and only if $Re\{\lambda_k\} < 0$ for all k.

Stability of input-output maps

The transfer function G(s) of a continuous time system, is said to be <u>input-output stable</u> (I/O-stable, or often just called "stable") if the following equivalent conditions hold:

- All poles of G have negative real part (G is Hurwitz stable)
- The impulse response of *G* decays exponentially.

Warning: There may be unstable pole-zero cancellations (which also render the system either uncontrollable and/or unobservable) and these may not be seen in the transfer function!!

For discrete time systems the corresponding conditions are : a pulse transfer function G(z) of a discrete time system

- lacktriangle All poles of G are inside the unit circle (G is Schur stable)
- lacktriangle The pulse response of G decays exponentially

Stability of input-output maps

The transfer function G(s) of a continuous time system, is said to be <u>input-output stable</u> (I/O-stable, or often just called "stable") if the following equivalent conditions hold:

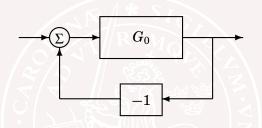
- All poles of *G* have negative real part (*G* is Hurwitz stable)
- The impulse response of *G* decays exponentially.

Warning: There may be unstable pole-zero cancellations (which also render the system either uncontrollable and/or unobservable) and these may not be seen in the transfer function!!

For discrete time systems the corresponding conditions are : a pulse transfer function G(z) of a discrete time system

- lacktriangle All poles of G are inside the unit circle (G is Schur stable).
- The pulse response of G decays exponentially.

Stability of feedback loops



The closed loop system is input-output stable if and only if all solutions to the equation

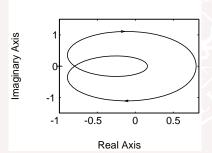
$$1 + G_0(s) = 0$$

are in the left half plane (i.e. has negative real part).

The Nyquist criterion

If $G_0(s)$ is stable, then the closed loop system $[1+G_0(s)]^{-1}$ is stable if and only if the Nyquist curve does not encircle -1

The difference between the number of unstable poles in $[1+G_0(s)]^{-1}$ and the number of unstable poles in $G_0(s)$ is equal to the number of times the point -1 is encircled by the Nyquist plot in the clockwise direction.



NOTE: nyquist-plot cmd in Matlab plots for both positive and negative frequencies!

Sensitivity and Robustness

- How sensitive is the closed loop system to model errors?
- How do we measure the "distance to instability"?
- Is it possible to guarantee stability for all systems within some distance from the ideal model?

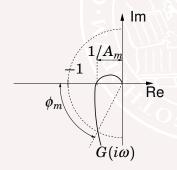
Amplitude and phase margin

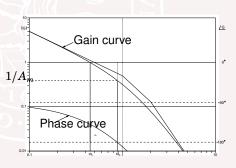
Amplitude margin A_m

$$\arg G(i\omega_0) = -180^{\circ}, \ |G(i\omega_0)| = \frac{1}{A_m}$$

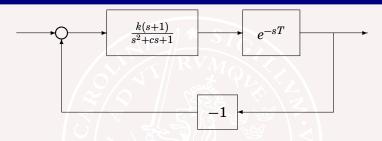
Phase margin ϕ_m

$$|G(i\omega_c)| = 1$$
, $\arg G(i\omega_c) = \phi_m - 180^\circ$

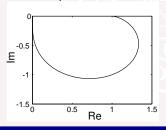


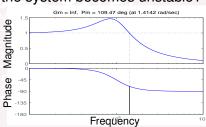


Mini-problem

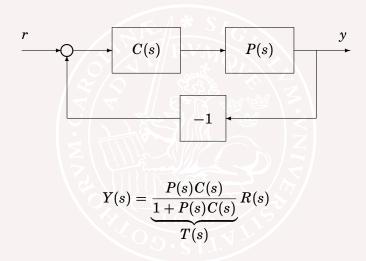


Nominally k = 1, c = 1 and T = 0. How much margin is there in each of the parameters before the system becomes unstable?





How sensitive is T to changes in P?



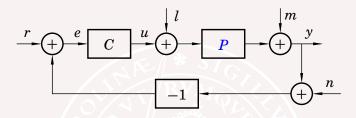
$$\frac{dT}{dP} = \frac{d}{dP}\left(1 - \frac{1}{1+PC}\right) = \frac{C}{(1+PC)^2} = \frac{T}{P(1+PC)}$$

Define the sensitivity function, S:

$$S:=\frac{d(\log T)}{d(\log P)}=\frac{dT/T}{dP/P}=\frac{1}{1+PC}$$

and the complementary sensitivity function T:

$$T := 1 - S = \frac{PC}{1 + PC}$$



Note that the

- complementary sensitivity function T is the transfer function $G_{r o \gamma}$
- sensitivity function S is the transfer function $G_{m \to v}$

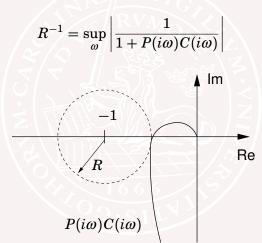
$$S+T=1$$

Note: there are four different transfer functions for this closed-loop system and all have to be stable for the system to be stable!

It may be OK to use an unstable controller C

Nyquist plot illustration

The sensitivity function measures the distance from the Nyquist plot to -1.



Lecture 2

- Stability
- Robustness and sensitivity
- Small gain theorem

Definition of vector norm

For $x \in \mathbf{R}^n$, we use the " L_2 -norm"

$$|x| = \sqrt{x^T x} = \sqrt{x_1^2 + \dots + x_n^2}$$

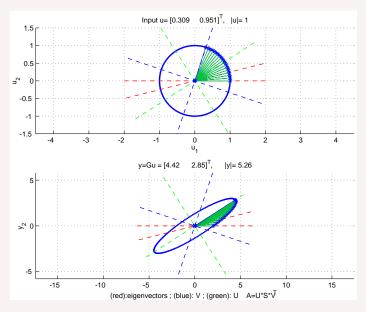
Definition of matrix norm

For $M \in \mathbf{R}^{n \times n}$, we use the " L_2 -induced norm"

$$||M|| := \sup_{x} \frac{|Mx|}{|x|} = \sup_{x} \sqrt{\frac{x^T M^T M x}{x^T x}} = \sqrt{\bar{\lambda}(M^T M)}$$

Here $\bar{\lambda}(M^TM)$ denotes the largest eigenvalue of M^TM . The fraction |Mx|/|x| is maximized when x is a corresponding eigenvector.

Different gains in different directions: $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$



Example

Matlab-code for singular value decomposition of the matrix

$$A = \begin{bmatrix} 2 & 4 \\ 0 & 3 \end{bmatrix}$$

SVD:

$$A = U \cdot S \cdot V^*$$

where both the matrices U and V are unitary (i.e. have orthonormal columns s.t. $V^* \cdot V = I$) and S is the diagonal matrix with (sorted decreasing) singular values σ_i .

Multiplying A with a input vector along the first column in V gives

$$A \cdot V_{(:,1)} = USV^* \cdot V_{(:,1)} =$$

$$= US \begin{bmatrix} 1 \\ 0 \end{bmatrix} = U_{(:,1)} \cdot \sigma_1$$

That is, we get maximal gain σ_1 in the output direction $U_{(:,1)}$ if we use an input in direction $V_{(:,1)}$ (and minimal gain $\sigma_n=\sigma_2$ if we use the last column $V_{(:,n)}=V_{(:,2)}$).

The L_2 -norm of a signal

For $y(t) \in \mathbf{R}^n$ the " L_2 -norm"

$$\|y\|_2 := \sqrt{\int_0^\infty |y(t)|^2 dt} \quad \text{ is equal to } \quad \sqrt{\frac{1}{2\pi} \int_{-\infty}^\infty |\mathcal{L}y(i\omega)|^2 d\omega}$$

The equality is known as Parseval's formula

The L_2 -gain of a system For a system S with input u and output S(u), the L_2 -gain is defined as

$$\|S\| := \sup_{u} \frac{\|S(u)\|_2}{\|u\|_2}$$

Miniproblem

What are the gains of the following systems?

1.
$$y(t) = -u(t)$$
 (a sign shift)

2.
$$y(t) = u(t - T)$$
 (a time delay)

3.
$$y(t) = \int_0^t u(\tau)d\tau$$
 (an integrator)

4.
$$y(t) = \int_0^t e^{-(t- au)} u(au) d au$$
 (a first order filter)

The L_2 -gain from frequency data

Consider a stable system S with input u and output S(u) having the transfer function G(s). Then, the system gain

$$\|\mathcal{S}\| := \sup_u \frac{\|\mathcal{S}(u)\|_2}{\|u\|_2} \quad \text{ is equal to } \quad \|G\|_\infty := \sup_\omega |G(i\omega)|$$

Proof. Let y = S(u). Then

$$\|y\|^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\mathcal{L}y(i\omega)|^2 d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 \cdot |\mathcal{L}u(i\omega)|^2 d\omega \leq \|G\|_{\infty}^2 \|u\|^2$$

The inequality is arbitrarily tight when u(t) is a sinusoid near the maximizing frequency.

Example: Consider the transfer function matrix $G(i\omega)$

$$G(s) = \begin{bmatrix} \frac{2}{s+1} & \frac{4}{2s+1} \\ \frac{s}{s^2 + 0.1s + 1} & \frac{3}{s+1} \end{bmatrix}$$

```
>> s=tf('s')
>> G=[ 2/(s+1) 4/(2*s+1); s/(s^2+0.1*s+1) 3/(s+1)];
>> sigma(G) % plot sigma values of G wrt fq
>> grid on
>> norm(G,inf) % infinity norm = system gain
ans =
    10.3577
```

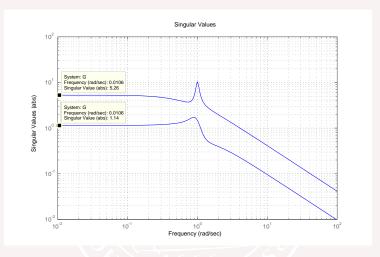
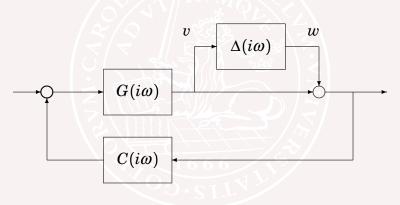


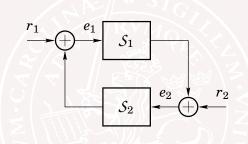
Figure: The singular values of the tranfer function matrix (prev slide). Note that $G(0)=[2,4;0\;3]$ which corresponds to M in the SVD-example above. $\|G\|_{\infty}=10.3577$.

Robustness

How large perturbations $\Delta(i\omega)$ can be tolerated without instability?



The Small Gain Theorem



Assume that \mathcal{S}_1 and \mathcal{S}_2 are input-output stable. If $\|\mathcal{S}_1\|\cdot\|\mathcal{S}_2\|<1$, then the gain from (r_1,r_2) to (e_1,e_2) in the closed loop system is finite.

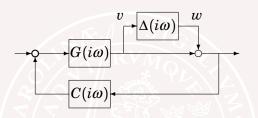
Proof

Define
$$||y||_T = \sqrt{\int_0^T |y(t)|^2 dt}$$
. Then $||\mathcal{S}(y)||_T \le ||\mathcal{S}|| \cdot ||y||_T$.

$$\begin{aligned} e_1 &= r_1 + \mathcal{S}_2(r_2 + \mathcal{S}_1(e_1)) \\ \|e_1\|_T &\leq \|r_1\|_T + \|\mathcal{S}_2\| \Big(\|r_2\|_T + \|\mathcal{S}_1\| \cdot \|e_1\|_T \Big) \\ \|e_1\|_T &\leq \frac{\|r_1\|_T + \|\mathcal{S}_2\| \cdot \|r_2\|_T}{1 - \|\mathcal{S}_1\| \cdot \|\mathcal{S}_2\|} \end{aligned}$$

This shows bounded gain from (r_1, r_2) to e_1 . The gain to e_2 is bounded in the same way.

Application to robustness analysis



The transfer function from w to v is

$$\frac{C(i\omega)G(i\omega)}{1+C(i\omega)G(i\omega)}$$

Hence the small gain theorem guarantees stability if

$$\|\Delta\|_{\infty} < \left(\sup_{\omega} \left\| \frac{C(i\omega)G(i\omega)}{1 + C(i\omega)G(i\omega)} \right\| \right)^{-1}$$

Lecture 2

- Stability
- Robustness and sensitivity
- Small gain theorem