
Lecture 1

Introduction1

This first lecture has two parts. The first part gives an introduction and overview
of the course, starting from two examples of modern control, a DVD-reader and car
dynamics. The second part of the lecture is a brief review of linear input-output
models in continuous time used in the basic course. The concepts of signal norm
and system gain are introduced.

1.1 First example — a DVD player

The appearance of cheap sensors, actuators and computing devices opens new ap-
plication areas for feedback control all the time, even in mass produced consumer
products. The control technology is mostly hidden to the user, but still critical for
operation and performance. A prime example of this is positioning of the pick-up
head in a storage device as a DVD or CD-rom, where the speed of data recovery
is directly correlated to the control performance.
A DVD (Digital Versatile Disk) is a data disk of the same physical size as a

CD. Its use is mostly for video, but also for computer software as a large CD-ROM
disk. The storage technology is in principle the same as for the CD, but improved.
A CD holds about 650 megabytes of data whereas a DVD holds 4.7 gigabytes (for
single layer, single side).

Pit

Track

0.74 µm

Figure 1.1 The right picture shows pits forming tracks on the DVD surface.

The disk surface is reflective, so that laser light is reflected back. Data bits
are represented by pits of different lengths in tracks on the disk. These pits make
the laser beam interfere destructively with itself, and therefore the pits look black
to the laser.
The surface velocity is constant (about 3.5 m/s), meaning that the disc should

rotate at different speeds depending on the current reading position. The challenge
of the control problem is related to the fact that only 0.022 µm deviations from the
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bit-track can be accepted. At the same time, a disk is always slightly asymmetric,
causing it to oscillate up to 100 µm per rotation, and the rotation speed is up to 23
Hz (for single speed). The tracking controller must compensate for this oscillation.
A typical DVD player has a pick-up-head consisting of a laser, an astigmatic

lens, and a light detector with four fields – see Figure 1.2. The lens is mounted
on springs in the axial (focus) and radial direction, and can be moved by electro-
magnets. This way, the laser spot can be moved very fast in a small range (a few
hundred tracks sideways). The lens and laser are mounted on the sledge, which
can move over the whole disk (in radial direction), but with much less precision
and speed.

Radial electromagnet

Focus electromagnet

Springs

Light detectors
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Tracks
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Pick−up head
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Disk

Figure 1.2 The pick-up-head has two electromagnets for fast positioning of the lens (left).
Larger radial movements are taken care of by the sledge (right).

Four light detectors are available to estimate the focus error and radial error
of the lens. Measurements are taken with a sampling frequency of 40 kHz and
the DVD standard specifies that the speed of control (cross-over frequency) must
be at least 2.4 kHz.
It turns out that most of the main topics of this course are relevant for the

solution of the DVD control problem and we have therefore chosen to use it as
a demonstrator. Both the focus control and the disc tracking will be treated in a
case study in lecture 5.

Figure 1.3 The DVD reader used in lecture 5.

Example: Midranging control

As an example towards multivariable control we will look at the pick-up-head of
the DVD-player. The pick-up-head can be moved radially by two different actua-
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Figure 1.4 Mid-ranging controller: Used to control a process P with one output and two
actuators (G1, G2).
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Figure 1.5 Alternative block diagram for the midrange controller in Fig. 1.4.

tors; the sledge on which it is mounted (large radial motion but relatively slow)
and by one of the electromagnets (limited range but fast actuation), see Fig. 1.2.
For the radial positioning of the head we can view it as a system with one output
and two control signals. Similar situations appear in aerospace control where we
may have many control surfaces ("rudders"), in car dynamics ( braking on differ-
ent wheels) and in process industry where it is common to place a large, slow
valve in parallel with a fast, small valve. One control structure often used for this
kind of actuation is mid-ranging control, see Fig.1.4

The control error e = yref − y is used as input to the "fast controller"/"fast
actuator", C1(s) and G1(s), respectively. This corresponds to the control of the
electromagnet in the DVD-player case. As the electromagnet can only move the
pick-up-head a small distance we would like to have it in the middle of its operat-
ing range to be able to react fast in both positive and negative directions during
normal operation. By comparing u1 and u1,ref, typically u1,ref = 50%, and using
this deviation as input to the slow controller circuit G2(s)C2(s), which in our case
corresponds to control of the sledge, the motion of the sledge will add an offset to
the output of G1 (takes care of large but slow variations). This means that after a
fast position compensation using G1C1, the control signal u1 can be brought back
to 50% of u1,max, its middle position, by moving the sledge, and the electromagnet
G1 can be ready to react on fast changes in both directions (should not be satu-
rated).

Remark: Mid-ranging control can be seen as a dual to cascade control where
you have two outputs and one control input [Hagander et. al.]
Similar tuning rules as for the cascade controller applies for the mindrange

controller, see Fig. 1.5.
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• First tune the fast inner loop, then the slower outer loop

• Controllers have separate time scales to avoid interaction

Warning: When you have two or more actuators in parallel, do NOT use parallel
integral action! Exercise: Explain why this will cause problems with e.g. drift and
pole-zero cancellations.

1.2 Second example — Control of car dynamics

A modern car contains numerous micro-processors devoted to feedback control. For
example, feedback from oxygen sensors in the exhaust gas are needed for proper
operation of the engine and catalyzer. This is essential for fuel efficiency and to
reduce the emission of polluting exhaust gases.
Other feedback loops are used to improve safety, by controlling the brakes to

prevent wheel-locks and to prevent skidding on slippery roads. A simplified model
for car dynamics is given by the state space description

[

V̇

ṙ

]

= A

[

V

r

]

+

[

0

b1

]

(u1 + u2 − u3 − u4) +

[

b2

b3

]

δ

where V is lateral speed and r is angular velocity. There are five control signals,
the steering angle δ and the brake forces u1, u2, u3 and u4 on the four wheels.

δ
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r

Figure 1.6 A modern car relies on feedback control for comfort, safety and fuel efficiency.
The left picture shows a test-car used in a research project together with DaimlerChrysler.

The state is generally not available for direct measurement. Even if the angular
velocity of each wheel can be measured, there is always some discrepancy between
the rotational speed and the speed over ground. Hence the velocity of the car
must be estimated based on information from several sources and the remaining
uncertainty must be taken into account in the control algorithms.
A typical sampling frequency for speed measurements is a few milliseconds.

This may sound fast enough compared to typical car dynamics, but when the
purpose is to prevent wheel-lock or accidents, a delay of a few milliseconds can in
fact be a severe obstacle for proper control performance.

1.3 Course overview

The objective of the course is that the students should learn the basic principles
for control of systems with multiple inputs and outputs. A schematic picture of
such a system is given below.
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Figure 1.7 Input-output diagram for car dynamics control.
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The control signal u(t) is determined using measurements of y(t) to achieve
desired behaviour of the process. For the DVD player, y(t) would be a vector of
four variables, representing intensities in the four light detectors in Figure 1.2,
while u(t) would correspond to the two electromagnets.
It is important to note that the dynamics of a real process is never known

exactly. Neither is it possible to precisely state the “true design objectives”. It is
therefore necessary to maintain a broader perspective on the engineering design
problem, see Figure 1.8.
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Figure 1.8 Schematic overview of the design process

Everything starts with an idea about the purpose of the control task. In simple
cases, it is possible to directly come up with a solution proposal that can be tested
experimentally and be accepted, possibly after minor modifications. However, in a
vast number of applications costs and time can be reduced by analyzing or simu-
lating a mathematical model before trying real experiments. The purpose of the
diagram is to illustrate this methodology. Note that the arrows point in two direc-
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tions. Failure in the experimental phase could not only require reimplementation,
but also new analysis, more accurate models, or even redefinition of the control
purpose.
Imagine stepping through the diagram in order to design a controller for car

dynamics as in the previous example. Suppose that a controller has been synthe-
sized based on the given two state model. Implementing a controller on a prototype
car is costly, so a second step would typically involve computer simulation. For this
purpose a more complex and accurate car model is needed, a model that is less
transparent from a synthesis perspective but better suited to reveal the deficien-
cies of a proposed controller. If the simulations fail, a reason could be that the
two state model was too simple and that additional features need to be taken
into account in the synthesis phase. After a sequence of attempts, one could hope
to find a solution ready for experimental tests. Alternatively, persisting failures
could be an indication that the original goal was overly optimistic and impossible
to achieve.
The main focus of this course is on the analysis/synthesis phase of the diagram

in Figure 1.8 with particular emphasis on linear multi-input-multi-output systems.
The outline and main topics of the course are the following

• Design of scalar controllers

• Stability and Robustness

• Fundamental system limitations

• Multi–input-multi–output systems

• Control design (LQ and LQG)

• Synthesis by convex optimization

Related courses on real-time control and implementation aspects, modelling,
system identification and nonlinear control can be found on
http://www.control.lth.se/education.

During the first five lectures we look at the basic control loops and see how
outputs and control signals are affected by reference values and disturbances,
similar to what was done in the basic course. We build on material from that
course, but make a deeper study of robustness and performance evaluation in
controller design. The first lab exercise is aimed to give practical training in scalar
controller design by frequency domain loop shaping.
After this, we start with multivariable systems, look at poles, zeros, observ-

ability, controllability, realizations etc. and discuss how the previous ides can be
applied to systems with several inputs and outputs. There is a short intermezzo
were we look at fundamental limitations in controller design and we also look
how some multivariable control problems can be transfered to simpler control
problems (decentralized and decoupled control). The second lab exercise will deal
with multivariable control of a system where the fundamental limitations play an
important role.
The second part of the course, lectures 9-14, continues along the lines of the

textbook and bring in the subject of optimization for controller design and synthe-
sis. The theory of linear quadratic (LQ) optimal control and Kalman filtering is a
cornerstone of modern control. It clarifies fundamental relationships between mea-
surement accuracy, control authority and achievable performance. Multivariable
systems also fit in very nicely. Computer tools and new optimization algorithms
have come to play an increasingly important role. Some recent research results
developed at the department are taught in this section, in particular on control
synthesis based on convex optimization.
Finally, the course is concluded by a lab exercise devoted to crane control.

Most of the main topics in the course are relevant for a successful solution to this
problem.
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1.4 Linear input-output maps

1.4 Linear input-output maps

In this section, we will review some different ways of specifying the input-output
relationship of a finite-dimensional linear time-invariant system. This is a system
that can be described by a state space equation

ẋ = Ax + Bu

y= Cx + Du

The differential equation has the solution formula

y(t) = CeAtx(0) +
∫ t

0
CeA(t−τ )Bu(τ )dτ + Du(t)

Note that the formula remains valid for multivariable systems, i.e. when both u(t)
and y(t) are vector valued.
The map from u to y is linear provided that x(0) = 0. Introducing the impulse

response �(t) as

�(t) =

∫ t

0
CeA(t−τ )Bδ (τ )dτ + Dδ (t) = CeAtB + Dδ (t)

the input-output map can be written as a convolution

y(t) =

∫ t

0
�(t− τ )u(τ )dτ = [� ∗ u](t)

In frequency domain, the convolution becomes multiplication

Y(s) = G(s)U(s)

and the Laplace transform of the impulse response is equal to the transfer function
G(s) = C(sI − A)−1B + D. For multivariable systems, both �(t) and G(s) are
matrices. The term impulse response is of course motivated by the fact that the
matrix element �i j(t) is the value of output i obtained when input j is an impulse
(Dirac function) at t = 0. This is sometimes used to determine �(t) experimentally.
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A more common experiment in process industry is the step response. Assuming
that the (possibly vector valued) input is a step

u(t) =

{

0 t < 0

u0 t ≥ 0

7



Lecture 1. Introduction1

the output becomes

y(t) =

∫ t

0
�(t− s)u0ds =

(
∫ t

0
�(τ )dτ

)

u0

Accordingly, the Laplace transform of the step response is G(s)u0/s.
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The main use of the Laplace transform is however to characterize the frequency
response. The input u(t) = u0 sinω t gives

y(t) =

∫ t

0
�(τ )u(t− τ )dτ = Im

[
∫ t

0
�(τ )e−iωτdτ ⋅ eiω tu0

]

The integral approaches G(iω ) as t → ∞, so after a transient, also the output
becomes sinusoidal and y(t) = Im

(

G(iω )eiω t
)

u0. To summarize, a linear time-
invariant system always gives a sinusoidal response to a sinusoidal input. For a
scalar system, the gain and phase shifts are determined by the amplitude and
phase of the complex number G(iω ).
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There are several ways to graphically illustrate the transfer function G(iω ).
One is to plot the amplitude and phase separately versus the frequency. This is
called the Bode diagram:
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It should be noted that each additional factor in the transfer function contributes
additively to the Bode plots:

log pG1G2G3p = log pG1p + log pG2p + log pG3p

argG1G2G3 = argG1 + argG2 + argG3

The Nyquist diagram is obtained by plotting G(iω ) directly in the complex
plane for different values of ω :

−1 −0.5 0 0.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

argG(iω )

pG(iω )p

Im

Re

If instead logG(iω ) = log pG(iω )p+ i argG(iω ) is plotted in the complex plane,
the Nichols diagram is obtained:
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The level curves of pG/(1 + G)p and argG/(1 + G) are plotted as dotted lines to
support use of the diagram in controller design.
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1.5 Signal norm and system gain

In order to efficiently analyze and optimize dynamical systems, it is useful to have
mathematical notions that measure the size of a signal and the gain of a system.
This is the reason for the following definitions.
The size of a signal y(t) ∈ Rn can be measured by the L2-norm, defined as

qyq2 :=

√

∫ ∞

0
py(t)p2dt

According to a theorem known as Parseval’s formula, the same norm can be de-
fined in frequency domain as

qyq2 =

√

1
2π

∫ ∞

−∞

pLy(iω )p2dω

For a system S with input u, output S(u) and zero initial state, the L2-gain
is defined as the largest possible fraction between the input norm and the output
norm

qSq := sup
u

qS(u)q

quq

The system is called input-output stable (or L2-stable) if its L2-gain is finite. For
example, a time delay does not change the signal norm, so it has gain one. However,
an integrator has infinite gain, since an input u(t) that is identically zero for t ≥ 1,
can give an output y(t) that is a nonzero constant for t ≥ 1. Hence, the fraction
qyq2/quq2 can be arbitrarily large.
More generally, the L2-gain of a system can be obtained as the maximum

amplitude in the Bode diagram:

THEOREM 1.1
A stable system with transfer function G(s) has the L2-gain

qGq∞ := sup
ω
pG(iω )p

Remark. For multivariable systems the pG(iω )p should be interpreted as the ma-
trix norm (the largest singular value) of G(iω ). This case will be studied more
carefully later.

Proof. Let y be the output corresponding to the input u. Then

qyq2 =
1
2π

∫ ∞

−∞

pLy(iω )p2dω ≤
1
2π

∫ ∞

−∞

pG(iω )p2 ⋅ pLu(iω )p2dω ≤ qGq2∞quq
2

The inequality is arbitrarily tight when u(t) is a sinusoid near the maximizing
frequency. 2

Example 1

a. For a time delay G(s) = e−sT we have pG(iω )p " 1.
b. For an integrator pG(iω )p = p 1

iω p =
1
ω which is unbounded ω = 0.

c. The Bode diagram plotted in the previous section has a peak magnitude
about 0.5 at the frequency 2 rad/sec. Hence, the L2-gain of the corresponding
system is smaller than one and the highest gain is obtained for an input sinusoid
of this frequency. 2
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