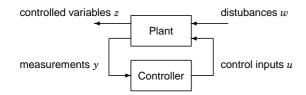
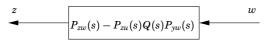
The Q-parametrization (Youla)



Idea for lecture 12-14:

The choice of controller generally corresponds to finding Q(s), to get desirable properties of the map from w to z:



Once Q(s) is determined, a corresponding controller is derived.

Most of this lecture is based on source material from Boyd,

http://www.control.lth.se/Education/EngineeringProgram/FRTN10/multivariable-

Lecture 13: Synthesis by Convex Optimization

Controller optimization using Youla parametrization

Introduction to convex optimization

Example — DCservo revisited

Vandenberghe and coauthors. See

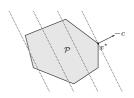
control.html

minimize
$$c^T x + d$$

subject to $Gx \leq h$

Linear program (LP)

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron



Convex ontimization problems 4–1

Least-squares

minimize
$$||Ax - b||_2^2$$

solving least-squares problems

- \bullet analytical solution: $x^\star = (A^TA)^{-1}A^Tb$
- reliable and efficient algorithms and software
- ullet computation time proportional to n^2k $(A\in {\mathbf R}^{k imes n});$ less if structured
- a mature technology

using least-squares

- least-squares problems are easy to recognize
- a few standard techniques increase flexibility (e.g., including weights, adding regularization terms)

Introduction

Linear programming

$$\begin{array}{ll} \text{minimize} & c^Tx \\ \text{subject to} & a_i^Tx \leq b_i, \quad i=1,\ldots,m \end{array}$$

solving linear programs

- no analytical formula for solution
- reliable and efficient algorithms and software
- ullet computation time proportional to n^2m if $m\geq n$; less with structure
- a mature technology

using linear programming

- not as easy to recognize as least-squares problems
- a few standard tricks used to convert problems into linear programs (e.g., problems involving ℓ_1 or ℓ_∞ -norms, piecewise-linear functions)

Introduction 1–6

Convex optimization problem

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq b_i, \quad i=1,\ldots,m \end{array}$$

• objective and constraint functions are convex:

$$f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$$

if
$$\alpha + \beta = 1$$
, $\alpha \ge 0$, $\beta \ge 0$

• includes least-squares problems and linear programs as special cases

Introduction 1–7

solving convex optimization problems

- no analytical solution
- reliable and efficient algorithms
- computation time (roughly) proportional to $\max\{n^3, n^2m, F\}$, where F is cost of evaluating f_i 's and their first and second derivatives
- almost a technology

using convex optimization

- often difficult to recognize
- many tricks for transforming problems into convex form
- surprisingly many problems can be solved via convex optimization

ntroduction 1–8

Brief history of convex optimization

theory (convex analysis): ca1900-1970

algorithms

- 1947: simplex algorithm for linear programming (Dantzig)
- 1960s: early interior-point methods (Fiacco & McCormick, Dikin, . . .)
- 1970s: ellipsoid method and other subgradient methods
- 1980s: polynomial-time interior-point methods for linear programming (Karmarkar 1984)
- late 1980s-now: polynomial-time interior-point methods for nonlinear convex optimization (Nesterov & Nemirovski 1994)

applications

- before 1990: mostly in operations research; few in engineering
- since 1990: many new applications in engineering (control, signal processing, communications, circuit design, . . .); new problem classes (semidefinite and second-order cone programming, robust optimization)

Introduction 1–15

Definition

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if $\operatorname{\mathbf{dom}} f$ is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \operatorname{\mathbf{dom}} f$, $0 \le \theta \le 1$

- ullet f is concave if -f is convex
- $\bullet \ f$ is strictly convex if $\operatorname{\mathbf{dom}} f$ is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for $x, y \in \operatorname{dom} f$, $x \neq y$, $0 < \theta < 1$

Convex functions

Examples on R

convex:

- $\bullet \ \, \text{affine:} \,\, ax+b \,\, \text{on} \,\, \mathbf{R} , \, \text{for any} \,\, a,b \in \mathbf{R} \\$
- exponential: e^{ax} , for any $a \in \mathbf{R}$
- ullet powers: x^{α} on \mathbf{R}_{++} , for $\alpha \geq 1$ or $\alpha \leq 0$
- ullet powers of absolute value: $|x|^p$ on ${\bf R}$, for $p\geq 1$
- \bullet negative entropy: $x\log x$ on \mathbf{R}_{++}

concave:

- $\bullet \ \, \text{affine:} \,\, ax+b \,\, \text{on} \,\, \mathbf{R} , \, \text{for any} \,\, a,b \in \mathbf{R} \\$
- powers: x^{α} on \mathbf{R}_{++} , for $0 \leq \alpha \leq 1$
- logarithm: $\log x$ on \mathbf{R}_{++}

nvex functions 3–3

Examples on \mathbf{R}^n and $\mathbf{R}^{m \times n}$

affine functions are convex and concave; all norms are convex

examples on \mathbb{R}^n

- affine function $f(x) = a^T x + b$
- \bullet norms: $\|x\|_p=(\sum_{i=1}^n|x_i|^p)^{1/p}$ for $p\geq 1;\ \|x\|_\infty=\max_k|x_k|$

examples on $\mathbf{R}^{m \times n}$ ($m \times n$ matrices)

• affine function

$$f(X) = \mathbf{tr}(A^TX) + b = \sum_{i=1}^m \sum_{j=1}^n A_{ij}X_{ij} + b$$

• spectral (maximum singular value) norm

$$f(X) = ||X||_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}$$

Convex functions 3–

Convex optimization problem

standard form convex optimization problem

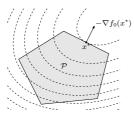
$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & a_i^T x = b_i, \quad i=1,\ldots,p \end{array}$$

- ullet $f_0,\,f_1,\,\ldots$, f_m are convex; equality constraints are affine
- ullet problem is *quasiconvex* if f_0 is quasiconvex (and f_1,\ldots,f_m convex)

Quadratic program (QP)

$$\begin{array}{ll} \text{minimize} & (1/2)x^TPx + q^Tx + r \\ \text{subject to} & Gx \preceq h \\ & Ax = b \end{array}$$

- ullet $P \in \mathbf{S}^n_+$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron



Convex optimization problems 4–22

Second-order cone programming

$$\begin{array}{ll} \text{minimize} & f^Tx \\ \text{subject to} & \|A_ix+b_i\|_2 \leq c_i^Tx+d_i, \quad i=1,\ldots,m \\ & Fx=g \end{array}$$

$$(A_i \in \mathbf{R}^{n_i \times n}, F \in \mathbf{R}^{p \times n})$$

Semidefinite program (SDP)

minimize
$$c^T x$$

subject to $x_1 F_1 + x_2 F_2 + \dots + x_n F_n + G \leq 0$
 $A x = b$

with F_i , $G \in \mathbf{S}^k$

• inequality constraint is called linear matrix inequality (LMI)

Matrix norm minimization

minimize
$$\|A(x)\|_2 = \left(\lambda_{\max}(A(x)^T A(x))\right)^{1/2}$$

where $A(x)=A_0+x_1A_1+\cdots+x_nA_n$ (with given $A_i\in \mathbf{S}^{p\times q}$) equivalent SDP

minimize t $\begin{bmatrix} tI & A(x) \end{bmatrix}$

- subject to $\left[\begin{array}{cc} tI & A(x) \\ A(x)^T & tI \end{array} \right] \succeq 0$
- $\bullet \ \ {\rm variables} \ x \in {\bf R}^n \mbox{, } t \in {\bf R}$
- constraint follows from

$$\begin{split} \|A\|_2 & \leq t &\iff A^T A \preceq t^2 I, \quad t \geq 0 \\ &\iff \left[\begin{array}{cc} tI & A \\ A^T & tI \end{array} \right] \succeq 0 \end{split}$$

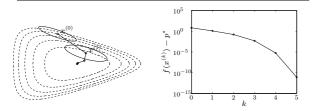
Convex optimization problem

4-39

Newton's method

given a starting point $x \in \operatorname{dom} f$, tolerance $\epsilon > 0$. repeat

- 1. Compute the Newton step and decrement.
- $\Delta x_{\rm nt} := -\nabla^2 f(x)^{-1} \nabla f(x); \quad \lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x).$ 2. Stopping criterion. quit if $\lambda^2/2 \le \epsilon$.
- 3. Line search. Choose step size t by backtracking line search.
- 4. Update. $x := x + t\Delta x_{\rm nt}$.

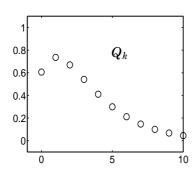


Outline

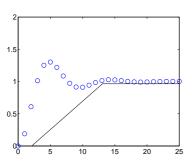
- Introduction to convex optimization
- Controller optimization using Youla parametrization
- Example DCservo revisited

Pulse response parameterization

We will use an intuitively simple parametrization of Q(s) where each parameter Q_k represents a point on the corresponding impulse response in time domain.



Lower bound on step response



The step response depends linearly on Q_k , so every time t_k with a lower bound gives a linear constraint.

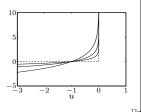
Barrier method for constrained minimization

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0 \quad 1 = 1, \ldots, m \\ & Ax = b \end{array}$$

approximation via logarithmic barrier

$$\begin{array}{ll} \text{minimize} & f_0(x) - (1/t) \sum_{i=1}^m \log(-f_i(x)) \\ \text{subject to} & Ax = b \end{array}$$

- an equality constrained problem
- for t > 0, $-(1/t)\log(-u)$ is a smooth approximation of I_-
- ullet approximation improves as $t o \infty$



Scheme for numerical optimization of Q

Given some fixed set of basis function $\phi_0(s), \dots, \phi_N(s)$, we will search numerically for matrices Q_0,\dots,Q_N such that the closed loop transfer matrix $G_{zw}(s)$ satisfies given specifications when

$$G_{zw}(s) = P_{zw}(s) - P_{zu}(s)Q(s)P_{yw}(s)$$
 and $Q(s) = \sum_{k=0}^{N}Q_k\phi_k(s)$

Once Q(s) has been determined, we will recover the desired controller from the formula

$$C(s) = \left[I - Q(s)P_{yu}(s)\right]^{-1}Q(s)$$

It is possible to choose the sequence $\phi_0(s), \phi_1(s), \phi_2(s), \ldots$ such that every stable Q can be approximated arbitrarily well. Hence, in principle, every convex control design problem can be solved this way.

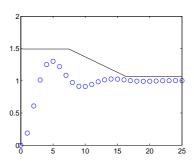
But, what specifications give a convex design problem?

Mini-problem

Which specifications are convex constraints on Q_k ?

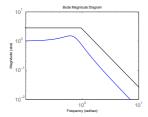
- 1. Stability of the closed loop system
- 2. Lower bound on step response from w_i to z_j at time t_i
- 3. Upper bound on step response from w_i to z_j at time t_i
- 4. Lower bound on Bode amplitude from w_i to z_i at frequency ω_i
- 5. Upper bound on Bode amplitude from w_i to z_i at frequency ω_i
- 6. Interval bound on Bode phase from w_i to z_i at frequency ω_i

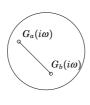
Upper bound on step response



Every time t_k with an upper bound also gives a linear constraint.

Upper bound on Bode amplitude





An amplitude bound $|G(i\omega_i)| < c$ is a quadratic constraint.

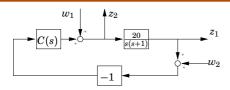
Synthesis by convex optimization

A general control synthesis problem can be stated as a convex optimization problem in the variables Q_0, \ldots, Q_m . The problem has a quadratic objective, with linear and quadratic constraints:

$$\begin{array}{ll} \text{Minimize} & \int_{-\infty}^{\infty} |P_{zw}(i\omega) + P_{zu}(i\omega) \sum_{k} Q_{k} \phi_{k}(i\omega) P_{yw}(i\omega)|^{2} d\omega \\ \\ \text{subject to} & \begin{array}{ll} \text{step response } w_{i} \rightarrow z_{j} \text{ is smaller than } f_{ijk} \text{ at time } t_{k} \\ \\ \text{step response } w_{i} \rightarrow z_{j} \text{ is bigger than } g_{ijk} \text{ at time } t_{k} \end{array} \right\} \text{ linear constraints} \\ \\ \text{Bode magnitude } w_{i} \rightarrow z_{j} \text{ is smaller than } h_{ijk} \text{ at } \omega_{k} \end{array} \right\} \text{ quadratic constraints}$$

Once the variables Q_0,\ldots,Q_m have been optimized, the controller is obtained as $C(s)=\begin{bmatrix}I-Q(s)P_{\gamma u}(s)\end{bmatrix}^{-1}Q(s)$

Example — DC-motor



The transfer matrix from (w_1, w_2) to (z_1, z_2) is

$$G_{zw}(s) = \begin{bmatrix} \frac{P}{1+PC} & \frac{-PC}{1+PC} \\ \frac{1}{1+PC} & \frac{-C}{1+PC} \end{bmatrix}$$

with $P(s) = \frac{20}{s(s+1)}$. We will choose C(s) to minimize

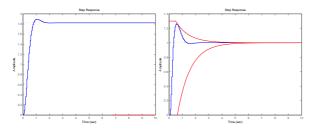
trace
$$\int_{-\infty}^{\infty}G_{zw}(i\omega)G_{zw}(i\omega)^*d\omega$$

subject time-domain bounds.

DC-servo with time domain bounds

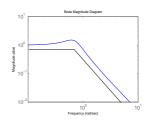
Input step disturbance

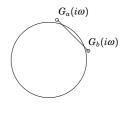
Reference step



The integral action in the controller is lost, just as in lecture 11!

Lower bound on Bode amplitude





An lower bound $|G(i\omega_i)|$ is a *non-convex* quadratic constraint. This should be avoided in optimization.

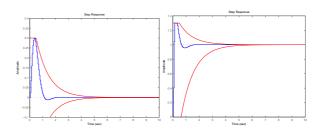
Outline

- o Introduction to convex optimization
- Controller optimization using Youla parametrization
- Example DCservo revisited

DC-servo with time domain bounds

Input step disturbance

Reference step



What if we remove the upper bound on the response to input disturbances ?

Summary

- ► There are efficient algorithms for convex optimization, e.g.
 - ► Linear programming (LP)
 - ► Quadratic programming (QP)
 - Second order cone programming (SOCP)
 - Semi-definite programming (SDP)
- The Youla parametrization allows us to use these algorithms for control synthesis
- Resulting controllers have high order. Order reduction will be studies in the last lecture before course summary.