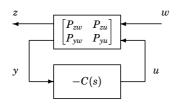
### **Lecture 12: Internal Model Control**

- Youla Parametrization
- Internal Model Control
- Dead Time Compensation

Section 8.4 in Glad/Ljung.

### The Youla Parametrization



The closed loop transfer matrix from  $\boldsymbol{w}$  to  $\boldsymbol{z}$  is

$$G_{zw}(s) = P_{zw}(s) - P_{zu}(s)Q(s)P_{yw}(s)$$

where

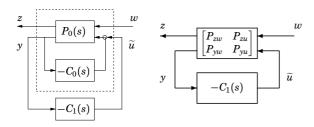
$$Q(s) = C(s) [I + P_{yu}(s)C(s)]^{-1}$$
  

$$C(s) = Q(s) + Q(s)P_{yu}(s)C(s)$$

$$C(s) = Q(s) + Q(s)P_{yu}(s)C(s)$$

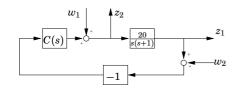
# $C(s) = \left[I - Q(s)P_{yu}(s)\right]^{-1}Q(s)$

## Closed loop stability for unstable plants



In case  $P_0(s)$  is unstable, let  $C_0(s)$  be a stabilizing controller. Then the previous argument can be applied with  $P_{zw}$ ,  $P_{zu}$  and  $P_{yw}$  representing the stabilized closed loop system.

## Example — DC-motor



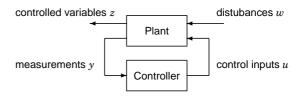
The transfer matrix from  $(w_1, w_2)$  to  $(z_1, z_2)$  is

$$G_{zw}(s) = egin{bmatrix} rac{P}{1+PC} & rac{-PC}{1+PC} \ rac{1}{1+PC} & rac{-C}{1+PC} \end{bmatrix}$$

where  $P(s) = \frac{20}{s(s+1)}.$  How should we choose stable  $P_{zw}, P_{zu},$  $P_{yw}$  and Q to get

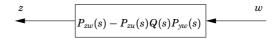
$$G_{zw}(s) = P_{zw}(s) - P_{zu}(s)Q(s)P_{yw}(s) ?$$

## The Q-parametrization (Youla)



#### Idea for lecture 12-14:

The choice of controller generally corresponds to finding Q(s), to get desirable properties of the map from w to z:



Once Q(s) is determined, a corresponding controller is found.

## Closed loop stability for stable plants

Suppose the original plant P is stable. Then

- ▶ Stabilty of Q(s) implies stability of  $P_{zw}(s) P_{zu}(s)Q(s)P_{yw}(s)$
- ▶ If  $Q = C[I + P_{yu}C]^{-1}$  is unstable, then small measurement errors gives unbounded input errors.

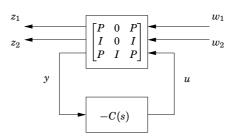
## Next lecture: Synthesis by convex optimization

A general control synthesis problem can be stated as a convex optimization problem in the variable Q(s). The problem could have a quadratic objective, with linear/quadratic constraints:

$$\begin{array}{ll} \text{Minimize} & \int_{-\infty}^{\infty} |P_{zw}(i\omega) + P_{zu}(i\omega) \overbrace{\sum_{k} Q_k \phi_k(i\omega)} P_{yw}(i\omega)|^2 d\omega \\ \text{subject to} & \begin{array}{ll} \text{step response } w_i \to z_j \text{ is smaller than } f_{ijk} \text{ at time } t_k \\ \text{step response } w_i \to z_j \text{ is bigger than } g_{ijk} \text{ at time } t_k \end{array} \right\} \text{ linear constraints} \\ & \text{Bode magnitude } w_i \to z_j \text{ is smaller than } h_{ijk} \text{ at } \omega_k \end{array} \right\} \text{ quadratic constraints}$$

Once the variables  $Q_0, \ldots, Q_m$  have been optimized, the controller is obtained as  $C(s) = [I - Q(s)P_{vu}(s)]^{-1}Q(s)$ 

## Stabilizing nominal feedback for DC-motor

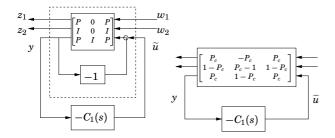


The plant  $P(s) = \frac{20}{s(s+1)}$  is not stable, so write

$$C(s) = C_0(s) + C_1(s)$$

where  $C_0(s) \equiv 1$  is a stabilizing controller.

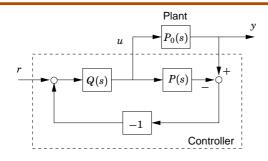
## Redraw diagram for DC motor example



$$G_{zw}(s) = egin{bmatrix} P_c & -P_c \ 1-P_c & P_c-1 \end{bmatrix} + egin{bmatrix} P_c \ 1-P_c \end{bmatrix} Q \begin{bmatrix} P_c & 1-P_c \end{bmatrix}$$

where  $P_c(s) = (1 + P(s))^{-1}P(s) = \frac{20}{s^2 + s + 20}$  is stable.

## **Internal Model Control**



Feedback is used only as the real process deviates from P(s).

The transfer function Q(s) defines how the desired input depends on the reference signal.

When  $P = P_0$ , the transfer function from r to y is P(s)Q(s).

## Internal Model Control — Strictly proper plants

When  $P=P_0$ , the transfer function from r to y is P(s)Q(s). Hence, ideally, one would like to put  $Q(s)=P(s)^{-1}$ . For several reasons this is not possible for accurate process models:

▶ If P(s) is strictly proper, the inverse would have more zeros than poles. Alternatively, one could choose

$$Q(s) = \frac{1}{(\lambda s + 1)^n} P(s)^{-1}$$

where n is large enough to make Q proper. The parameter  $\lambda$  influences the speed of control.

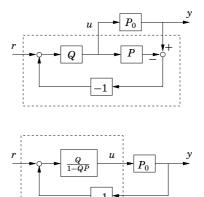
## Example 1 — First order plant model

$$\begin{split} P(s) &= \frac{1}{\tau s + 1} \\ Q(s) &= \frac{1}{\lambda s + 1} P(s)^{-1} = \frac{\tau s + 1}{\lambda s + 1} \\ C(s) &= \frac{Q(s)}{1 - Q(s)P(s)} = \frac{\frac{\tau s + 1}{\lambda s + 1}}{1 - \frac{1}{\lambda s + 1}} = \underbrace{\frac{\tau}{\lambda} \left(1 + \frac{1}{s\tau}\right)}_{\text{PI controller}} \end{split}$$

### **Outline**

- Youla Parametrization
- Internal Model Control
- Dead Time Compensation

## Two equivalent diagrams



# Internal Model Control — Zeros and delays

Once again, ideally, one would like to put  $Q(s) = P(s)^{-1}$ .

Here are other reasons why this is often not possible:

- If P(s) has unstable zeros, the inverse would be unstable. Alternatively, one could either remove every unstable factor  $(-\beta s+1)$  from the plant numerator before inverting, or replace it by  $(\beta s+1)$ . With the latter alternative, only the phase is modified, not the amplitude function.
- If P(s) includes a time delay, its inverse would have to predict the future. Instead, the time delay is removed before inverting.

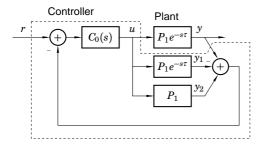
# Example 2 — Non-minimum phase plant

$$\begin{split} P(s) &= \frac{-\beta s + 1}{\tau s + 1} \\ Q(s) &= \frac{(-\beta s + 1)}{(\beta s + 1)} P(s)^{-1} = \frac{\tau s + 1}{\beta s + 1} \\ C(s) &= \frac{Q(s)}{1 - Q(s)P(s)} = \frac{\frac{\tau s + 1}{\beta s + 1}}{1 - \frac{(-\beta s + 1)}{(\beta s + 1)}} = \underbrace{\frac{\tau}{2\beta} \left(1 + \frac{1}{s\tau}\right)}_{\text{PI controller}} \end{split}$$

### **Outline**

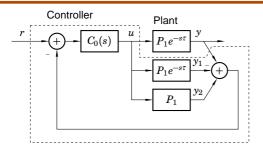
- o Youla Parametrization
- o Internal Model Control
- Dead Time Compensation

## **Smith Compensator**



Idea: Make an internal model of the process (with and without the delay) in the controller. Ideally Y and  $Y_1$  cancel each other and use feedback from  $Y_2$  "without delay".

## Smith Compensator — A Success Story!

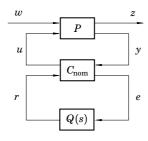


- ► Intriguing properties
- ► Numerous modifications
- Many industrial applications

Otto J.M. Smith listed in the ISA "Leaders of the Pack" list (2003) as one of the 50 most influential innovators since 1774.

## Youla parametrization revisited

The Youla-parametrization:



where  $C_{\text{nom}}$  stabilizes the [P, C]-system and Q(s) is any stable transfer function.

## **Dead Time Compensation**

Consider the plant model

$$P(s) = P_1(s)e^{-s\tau}$$

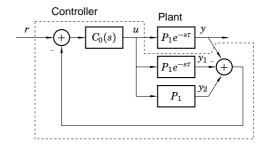
Let  $C_0=Q/(1-QP_1)$  be the controller we would have used without delays. Then  $Q=C_0/(1+C_0P_1)$ .

The rule of thumb tell us to use the same  ${\it Q}$  also for systems with delays. This gives

$$\begin{split} C(s) &= \frac{Q(s)}{1 - Q(s)P_1(s)e^{-s\tau}} = \frac{C_0/(1 + C_0P_1)}{1 - e^{-s\tau}P_1C_0/(1 + C_0P_1)} \\ C(s) &= \frac{C_0(s)}{1 + (1 - e^{-s\tau})C_0(s)P_1(s)} \end{split}$$

This modification of the  $C_0(s)$  to account for time delays is known as dead time compensation according to Otto Smith.

## **Smith Compensator**

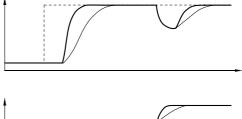


$$Y(s) = e^{-s\tau} \frac{C_0(s)P_1(s)}{1 + C_0(s)P_1(s)} R(s)$$

- ▶ Delay eliminated from denominator!
- ▶ Reference response greatly simplified!

## **Example: Dead Time Compensation**

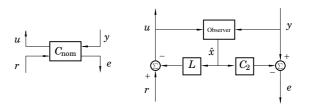
Otto Smith compensator (thick) and standard PI controller (thin)





## **Nominal Controller**

Linear system with observer



In equations 
$$\dot{\hat{x}} = A\hat{x} + Bu(k) + Ke(k)$$
 
$$u = r - L\hat{x}$$
 
$$e = y - C\hat{x}$$