Lecture 11: More on LQG

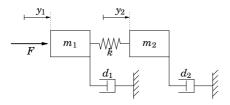
► Example: Lab servo revisited

► Connections to loop shaping

► Example: LQG design for DC-servo

The purpose of this lecture is not to introduce new results, but to explain the use of previous theory. The DC-servo example is from section 10.2 in Glad/Ljung.

Example: Flexible servo



$$m_1 \frac{d^2 y_1}{dt^2} = -d_1 \frac{dy_1}{dt} - k(y_1 - y_2) + F(t)$$

$$m_2 \frac{d^2 y_2}{dt^2} = -d_2 \frac{dy_2}{dt} + k(y_1 - y_2)$$

Choice of minimization criterion

How choose Q_1 , Q_2 , Q_{12} in the cost function

$$x^{T}Q_{1}x + 2x^{T}Q_{12}u + u^{T}Q_{2}u$$

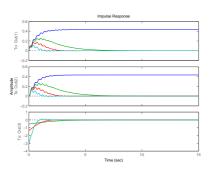
Rules of thumb:

- ▶ Put $Q_{12} = 0$ and make Q_1 , Q_2 diagonal
- Make the diagonal elements equal to the inverse value of the square of the allowed deviation:

$$\begin{aligned} x(t)^{T}Q_{1}x(t) + u(t)^{T}Q_{2}u(t) \\ &= \left(\frac{x_{1}(t)}{x_{1}^{\max}}\right)^{2} + \dots + \left(\frac{x_{n}(t)}{x_{n}^{\max}}\right)^{2} + \left(\frac{u_{1}(t)}{u_{1}^{\max}}\right)^{2} + \dots + \left(\frac{u_{m}(t)}{u_{m}^{\max}}\right)^{2} \end{aligned}$$

Position error control

Response of $x_1(k), x_3(k), u(k) = -Lx(k)$ on impulse disturbance in F. $Q_1 = \mathrm{diag}\{\rho, 0, \rho, 0\}$ $(\rho = 0, 1, 10, 100)$, $Q_{12} = 0$, $Q_2 = 1$. Large $\rho \Rightarrow$ fast response but large control signal.



Recall the main result of LQG

Given white noise (v_1, v_2) with intensity R and the linear plant

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) + Nv_1(k) \\ y(t) = Cx(t) + v_2(t) \end{cases} \qquad R = \begin{bmatrix} R_1 & R_{12} \\ R_{12}^T & R_2 \end{bmatrix}$$

consider controllers of the form $u=-L\widehat{x}$ with $\frac{d}{dt}\widehat{x}=A\widehat{x}+Bu+K[y-C\widehat{x}].$ The stationary variance

$$\mathbf{E}\left(x^TQ_1x + 2x^TQ_{12}u + u^TQ_2u\right)$$

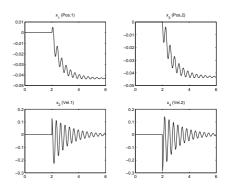
is minimized when

$$\begin{split} K &= (PC^T + NR_{12})R_2^{-1} \qquad L = Q_2^{-1}(SB + Q_{12})^T \\ 0 &= Q_1 + A^TS + SA - (SB + Q_{12})Q_2^{-1}(SB + Q_{12})^T \\ 0 &= NR_1N^T + AP + PA^T - (PC^T + NR_{12})R_2^{-1}(PC^T + NR_{12})^T \end{split}$$

The minimal variance is

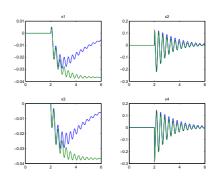
$$\operatorname{tr}(SNR_1N^T) + \operatorname{tr}[PL^T(B^TSB + Q_2)L]$$

Open loop response



Velocity error or position error?

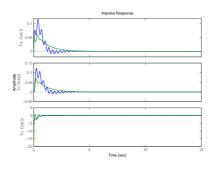
Minimize $\mathbf{E}[x_2(k)^2 + x_4(k)^2 + u(k)^2]$ or $\mathbf{E}[x_1(k)^2 + x_3(k)^2 + u(k)^2]$?



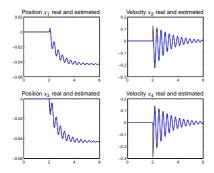
When only velocity is penalized, a static position error remains

Position+velocity error control

To reduce oscillations, penalize also velocity error. Comparision between $Q_1={\rm diag}\{100,0,100,0\}$ and $Q_1={\rm diag}\{100,100,100,100\}$

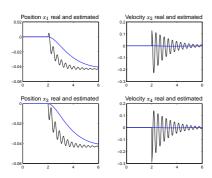


Real and estimated states



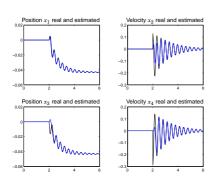
A Kalman filter estimates the states using measured positions. Why is the transient error bigger in the right plots?

Reduced R_1



When the expected process perturbations are small, the observer will be slower.

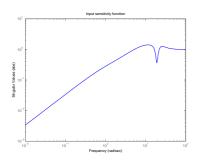
Increased lower right corner of R_2



The measurement y_2 is not trusted, so the estimate of x_3 slows down.

Don't forget "The Gang of Four"!

Check all relevant transfer functions for robustness and signal sizes. The input sensitivity $|(I + CP)^{-1}(i\omega)|$ is plotted below. No large peaks, maximum=1.4.

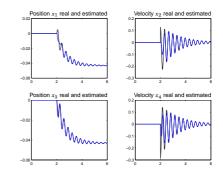


Miniproblem

What happens if

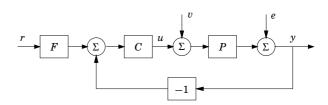
- we reduce R_1 by 10000?
- ▶ we increase the upper left corner of R₂ by 10000?
- ▶ we increase the lower right corner of R₂ by 10000?

Increased the upper left corner of R_2



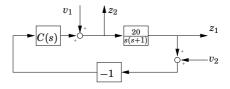
The measurement y_1 is not trusted, so the estimate of x_1 slows down.

Recall the simple control loop



- ▶ Reduce the effects of load disturbances
- ► Control the effects of measurement noise
- Reduce sensitivity to process variations
- Make output follow command signals

Example — DC-servo



With $P(s)=rac{20}{s(s+1)}$, the transfer matrix from (v_1,v_2) to (z_1,z_2) is

$$G_{zv}(s) = \begin{bmatrix} \frac{P}{1+PC} & \frac{-PC}{1+PC} \\ \frac{1}{1+PC} & \frac{-C}{1+PC} \end{bmatrix}$$
 As a first (preliminary) design, we choose $C(s)$ to minimize

trace
$$\int_{-\infty}^{\infty} G_{zv}(i\omega)G_{zv}(i\omega)^*d\omega$$

This minimizes $\mathbf{E}(|z_1|^2 + |z_2|^2)$ when (v_1, v_2) is white noise.

Example — DC-motor

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}}_{A} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \underbrace{\begin{bmatrix} 20 \\ 0 \end{bmatrix}}_{B} u + \underbrace{\begin{bmatrix} 20 \\ 0 \end{bmatrix}}_{N} v_1$$

$$y = x_2 + v_2 \qquad z_1 = x_2 \qquad z_2 = u + v_2$$

Minimization of $\mathbf{E}(|z_1|^2+|z_2|^2)$ is the LQG problem defined by

$$Q_1 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \qquad Q_2 = 1 \qquad R = \begin{bmatrix} R_1 & 0 \\ 0 & R_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Solving the Riccati equations gives the optimal controller

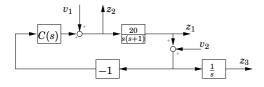
$$\frac{d}{dt}\widehat{x} = (A - BL)\widehat{x} + K[y - C\widehat{x}] \qquad u = -L\widehat{x}$$

where

$$L = \begin{bmatrix} 0.2702 & 0.7298 \end{bmatrix} \qquad K = \begin{bmatrix} 20.0000 \\ 5.4031 \end{bmatrix}$$

Example — DC-motor

To remove static errors in the output we penalize also z_3 :

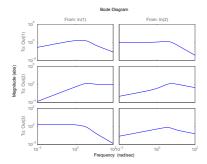


The transfer matrix from (v_1,v_2) to (z_1,z_2,z_3) is

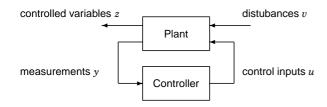
$$G_{zv}(s) = egin{bmatrix} rac{P}{1+PC} & rac{-PC}{1+PC} \ rac{1}{1+PC} & rac{-C}{1+PC} \ rac{P}{s(1+PC)} & rac{-PC}{s(1+PC)} \end{bmatrix}$$

Bode magnitude plots after optimization

$$G_{zv}(s) = egin{bmatrix} rac{P}{1+PC} & rac{-PC}{1+PC} \ rac{1}{1+PC} & rac{-C}{1+PC} \ rac{P}{s(1+PC)} & rac{-PC}{s(1+PC)} \ \end{pmatrix}$$



Alternative norms for optimization



LQG optimal control:

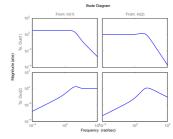
Minimize
$$\int_{-\infty}^{\infty}G_{zv}(i\omega)G_{zv}(i\omega)^*d\omega$$

 H_{∞} optimal control:

$$\text{Minimize} \quad \max_{\omega} \|G_{zv}(i\omega)\|$$

Bode magnitude plots after optimization

$$G_{zv}(s) = egin{bmatrix} rac{P}{1+PC} & rac{-PC}{1+PC} \ rac{1}{1+PC} & rac{-C}{1+PC} \end{bmatrix}$$



Nonzero static gain in $\frac{P}{1+PC}$ indicates poor disturbance rejection

Extended DC-motor model

With the model

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \overbrace{\begin{bmatrix} 0 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & 0 \end{bmatrix}}^{A_{\rm e}} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \overbrace{\begin{bmatrix} 20 \\ 0 \\ 0 \end{bmatrix}}^{B_{\rm e}} u + \overbrace{\begin{bmatrix} 20 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}}^{v_{\rm le}} \underbrace{\begin{bmatrix} v_{\rm le} \\ v_{\rm le} \\ v_{\rm le} \end{bmatrix}}^{v_{\rm le}}$$

$$y = x_2 + v_2$$

minimization of $|x_2|^2 + |x_3|^2 + |u|^2$ gives the optimal controller

$$\frac{d}{dt}\hat{x}_{\rm e} = (A_{\rm e} - B_{\rm e}L_{\rm e})\hat{x}_{\rm e} + K_{\rm e}[y - C_{\rm e}\hat{x}_{\rm e}] \qquad u = -L\hat{x}$$

where

Summary of LQG

Advantages

- ▶ Works fine with multi-variable models
- ► Observer structure ties to reality
- Always stabilizing
- ► Guaranteed robustness in state feeback case
- ▶ Well developed theory

Disadvantages

- ► High order controllers
- ▶ Sometimes hard to choose weights

Linear Quadratic Game Problems

Notice that $\max_{\omega} \|G_{zv}(i\omega)\| \leq \gamma$ if and only if $|z|^2 - \gamma^2 |v|^2 < 0$

for all solutions to the system equations.

The H_{∞} optimal control problem with $|z|^2=x^TQ_1x+u^TQ_2u$ can be restated in terms of linear quadratic games of the form

$$\min_{u} \max_{v} (x^{T}Q_{1}x + u^{T}Q_{2}u - \gamma^{2}|v|^{2})$$

These can be solved using Riccati equations, just like LQG.