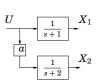
Limitations: Controllability [from lec 6]

System $\dot{x} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} x + \begin{bmatrix} 1 \\ a \end{bmatrix} u$

State x_2 is *uncontrollable* for a = 0 and "hard to control" for



 $\frac{\text{Controllability matrix}}{W_c = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ a & -2a \end{bmatrix}}$

 $\begin{array}{c} \underset{\left[\begin{array}{c} 1 \\ a \end{array} \right]}{\overset{\left[1 \\ a \end{array} \right]}{=} \begin{array}{c} \\ \end{array} \end{array} } \begin{array}{c} \underset{\left[\begin{array}{c} 0 \\ AS + SA^T + BB^T = 0 \end{array}}{\overset{\left[\begin{array}{c} 1 \\ a \end{array} \right]}{=} \begin{array}{c} \\ \end{array} \end{array} \end{array} \\ S = \ldots = \begin{bmatrix} \frac{1}{2} & \frac{1}{3}a \\ \frac{1}{3}a & \frac{1}{4}a^2 \end{bmatrix}$

small values of a.

Plot of $\begin{bmatrix} x_1 & x_2 \end{bmatrix} \cdot S^{-1} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 1$ corresponds to what states we can reach by $\int_0^{t_1} |u(t)|^2 dt = 1.$

Unstable poles — "intuitive reasoning"

Lecture 7: Fundamental Limitations

- Limitations from unstable poles and zeros: Intuition
- A back-wheel steered bicyle?
- Limitations from unstable poles and zeros: Hard proofs
- Bode's integral formula
- Bode's relation: Coupling magnitude and phase

See lecture notes and [G&L Ch. 7]

Systems with time-delay

An unstable pole p makes the output signal for a bounded input grow exponentially as $\sim e^{pt}$. To stabilize this system, one has to act fast, on a time scale proportional to $\sim 1/p$.

Intuitive conclusion: Unstable poles give a lower bound on the speed of the closed loop.

Assume that the plant contains a time-delay T. This means e.g. that a load disturbance is not visible in the output signal until after at least T time units. Of course, this puts a hard constraint on how quickly a feedback controller can reject the disturbance!

Intuitive conclusion: Time delays give an upper bound on the speed of the closed loop.

Unstable zeros — "intuitive reasoning"

The step response of a system with a process *zero in the right half plane* (i.e, with positive real part) goes initially in the "wrong direction".

Intuitive conclusion: Unstable zeros give an upper bound on the speed of the closed loop.

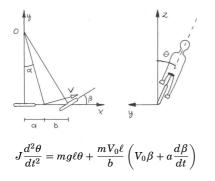
Why the wrong direction? The Laplace transform of the system output signal G(s)U(s) will be 0 if we evaluate it at s = z where z is a process zero. If we in particular look at the step response, call it y(t), and its Laplace transform we get

$$0 = Y(z) = \int_0^\infty y(t) \underbrace{e^{-zt}}_{>0} dt$$

Hence, y(t) must takey both positive and negative values!

Bike example

A (linearized) torque balance for a bicycle can be approximated as



Mini-problems

- 1. Give examples of systems that initially respond in the "wrong" direction.
- 2. Which of the intuitive arguments can be applied toan inverted pendulum?
 - an inverted pendulum?
 - a rear wheel steered bicycle?

Bike example, cont'd

$$J\frac{d^{2}\theta}{dt^{2}} = mg\ell\theta + \frac{mV_{0}\ell}{b}\left(V_{0}\beta + a\frac{d\beta}{dt}\right)$$

where the physical parameters have typical values as follows:

Mass:	m = 70 kg
Distance rear-to-center:	a = 0.3m
Height over ground:	$\ell=1.2~\text{m}$
Distance center-to-front:	b = 0.7 m
Moment of inertia:	$J=120~{\rm kgm^2}$
Speed:	$V_0=5~{\rm ms}^{-1}$
Acceleration of gravity:	$g = 9.81 \ { m ms}^{-2}$

The transfer function from β to θ is

$$P(s) = \frac{mV_0\ell}{b} \frac{as + V_0}{Js^2 - mg\ell}$$

The system has an unstable pole p with time-constant

$$p^{-1} = \sqrt{rac{J}{mg\ell}} pprox 0.4 \ {
m s}$$

The closed loop system must be at least as fast as this. Moreover, the transfer function has a zero z with

$$z^{-1}=-\frac{a}{V_0}\approx-\frac{0.3\mathrm{m}}{V_0}$$

For the back-wheel steered bike we have the same poles but different sign of V_0 and the zero will thus the be unstable!

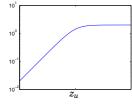
An unstable pole-zero cancellation occurs for $V_0 \approx 0.75$ m/s.

Hard limitations from unstable zeros

If the plant has an unstable zero z_u , then the specification

$$\left|\frac{1}{1+P(i\omega)C(i\omega)}\right| < \frac{2}{\sqrt{1+z_u^2/\omega^2}} \qquad \qquad \text{for all } \omega$$

is impossible to satisfy.



The Maximum Modulus Theorem

The proofs will be based on the following theorem:

Suppose that all poles of the rational function G(s) have negative real part. Then

$$\max_{Re \, s > 0} |G(s)| = \max_{\omega \in \mathbf{R}} |G(i\omega)|$$

- Limitations from unstable poles and zeros: Intuition
- A back-wheel steered bicyle?
- Limitations from unstable poles/zeros: Hard proofs
- Bode's integral formula
- Bode's relation: Coupling magnitude and phase

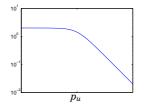
Hard limitations from unstable poles

If the plant has an unstable pole p_u , then the specification

$$\left|\frac{P(i\omega)C(i\omega)}{1+P(i\omega)C(i\omega)}\right| < \frac{2}{\sqrt{1+\omega^2/p_u^2}} \qquad \text{ for all } \omega$$

is impossible to satisfy.

 $P(i\omega)C(i\omega)$



Sensitivity bounds from unstable zeros

It is easy to see that the sensitivity function must be equal to one at a righ-half-plane zero $s = z_u$ of the transfer function:

$$P(z_u) = 0 \qquad \Rightarrow \qquad S(z_u) := \frac{1}{1 + \underbrace{P(z_u)}_0 C(z_u)} = 1$$

Notice that the unstable zero in the plant can not be cancelled by an unstable pole in the controller, since this would give an unstable transfer function C/(1 + PC) from measurement noise to control input.

Corollary of the Maximum Modulus Theorem

Suppose that the plant P(s) has unstable zeros z_i and unstable poles p_i . Then the specifications

$$\sup_{\omega} |W_a(i\omega)S(i\omega)| \le 1$$
 $\sup_{\omega} |W^b(i\omega)T(i\omega)| \le 1$

are impossible to meet with a stabilizing controller unless $||W_a(z_i)|| \le 1$ for every unstable zero z_i and $||W^b(p_j)|| \le 1$ for every unstable pole p_j .

In particular, if $W_a = (s + a)/(2s)$ and $W^b(s) = (s + b)/(2b)$, it is necessary that $a \leq \min_i z_i$ and $b \geq \max_j p_j$. This proves the statements on slide 12 & 13.

Sensitivity bounds from unstable poles

Similarly, the complimentary sensitivity must be one at an unstable pole p_u :

$$P(p_u) = \infty \qquad \Rightarrow \qquad T(p_u) := \frac{P(p_u)C(p_u)}{1 + P(p_u)C(p_u)} = 1$$

In this case, cancellation by an unstable zero in the controller would give an unstable transfer function P/(1 + PC) from input disturbance to plant output.

Bode's Integral Formula ("The water bed effect")

- Limitations from unstable poles and zeros: Intuition
- A back-wheel steered bicyle?
- Limitations from unstable poles/zeros: Hard proofs
- Bode's integral formula
- Bode's relation: Coupling magnitude and phase

For a system with loop gain
$$L = PC$$
 which has a relative degree ≥ 2 and unstable poles p_1, \ldots, p_M , the following *conservation law* for the sensitivity function $S = \frac{1}{1+L}$ holds.

$$\int_{0}^{+\infty} \log |S(i\omega)| d\omega = \pi \sum_{i=1}^{M} \operatorname{Re}(p_i)$$

See [G&L Theorem 7.3] for details/asumptions.

G. Stein: "Conservation of "dirt!""

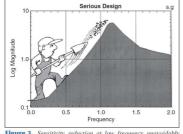
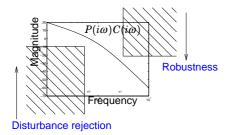


Figure 3. Sensitivity reduction at low frequency unavoidal leads to sensitivity increase at higher frequencies.

Picture from Gunter Steins Bode Lecture (1985) "Respect the unstable". Reprint in [IEEE Control Systems Magazine (Aug 2003)]

Recall that the loop transfer matrix should have small norm $||P(i\omega)C(i\omega)||$ at high frequencies, while at low the frequencies instead $||[P(i\omega)C(i\omega)]^{-1}||$ should be small.

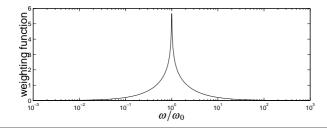


How quickly can we make the transition from high to low gain?

Bode's Relation — Exact version

If G(s) is stable with no unstable zeros (*minimum-phase*), then

$$\arg G(i\omega_0) = \frac{2\omega_0}{\pi} \int_0^\infty \frac{\log |G(i\omega)| - \log |G(i\omega_0)|}{\omega^2 - \omega_0^2} d\omega$$
$$= \frac{1}{\pi} \int_0^\infty \frac{d \log |G(i\omega)|}{d \log \omega} \underbrace{\log \left|\frac{\omega + \omega_0}{\omega - \omega_0}\right|}_{\text{weighting function}} d\log \omega$$



Lecture 7: Fundamental Limitations

- Limitations from unstable poles and zeros: Intuition
- A back-wheel steered bicyle?
- Limitations from unstable poles/zeros: Hard proofs
- Bode's integral formula
- Bode's relation: Coupling magnitude and phase

Bode's Relation — Approximate version

If G(s) is stable with no unstable zeros (*minimum-phase*), then

$$rg G(i\omega_0) pprox rac{\pi}{2} \left. rac{d \log |G(i\omega)|}{d \log \omega}
ight|_{\omega = \omega_0}$$

Otherwise the argument is even smaller.

As a consequence, the decay rate of the magnitude curve must be less than 2 at the cross-over frequency.

Summary: Fundamental Limitations

- Limitations from unstable poles and zeros: Intuition
- A back-wheel steered bicyle?
- Limitations from unstable poles/zeros: Hard proofs
- Bode's integral formula
- Bode's relation: Coupling magnitude and phase