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L1-L5 Specifications, models and loop-shaping by hand
1. Introduction and system representations
2. Stability and robustness
3. Specifications and disturbance models
4. Control synthesis in frequency domain
5. Case study
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L9-L11 Controller optimization: Analytic approach

L12-L14 Controller optimization: Numerical approach

Lecture 3: Specific ations and Disturbanc e Models

Continuing from lecture 2...

◮ Look at all transfer functions the closed-loop system!
(Gang of Four / Gang of six)

◮ Scalings

New today

◮ Stochastic disturbances
◮ From transfer function to output spectrum
◮ From output spectrum to transfer function

[Glad & Ljung] Ch. 5.1–5.6, 6.1–6.3

A Basic Cont rol System
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Ingredients:

◮ Controller: feedback C, feedforward F
◮ Load disturbance d: Drives the system from desired state
◮ Measurement noise n: Corrupts information about x
◮ Process variable x should follow reference r

Specific ations

Find a controller that

A: Reduces effects of load disturbances

B: Does not inject too much measurement noise into the
system

C: Makes the closed loop insensitive to variations in the
process

D: Makes output follow command signals

Convenient to use a controller with two degrees of freedom, i.e.
separate signal transmission from y to u and from r to u. This
gives a complete separation of the problem: Use feedback to
deal with A, B, and C. Use feedforward to deal with D!

System with Two Degrees of Freedom
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The controller has two degrees of freedom (2DOF) because the
transfer function from reference r to control u is different from
the transfer function from y to u.

We have already encountered this in e.g., PID control

u(t) = k(br(t) − y(t)) +
∫ t

0

(r(τ ) − y(τ ))dτ + d
dt
{0 ⋅ r − y}

Designi ng System with Two Degrees of Freedom

Design procedure:

◮ Design the feedback C to achieve
◮ Small sensitivity to load disturbances d
◮ Low injection of measurement noise n
◮ High robustness to process variations

◮ Then design the feedforward F to achieve desired
response to command signals r

For many problems in process control the load disturbance
response is much more important than the set point response.
The set point response is more important in motion control.
Few textbooks and papers show more than set point responses.

Many Versions of 2DOF
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For linear systems all 2DOF configurations have the same
properties. For the systems above we have

CF = Mu + CMy

3. Relations between signals
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X = P
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1+ PCR
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Some Observations

◮ A system based on error feedback is characterized by four
transfer functions (The Gang of Four)

◮ The system with a controller having two degrees of
freedom is characterized by six transfer function (The
Gang of Six)

◮ To fully understand a system it is necessary to look at all
transfer functions

◮ It may be strongly misleading to only show properties of a
few systems for example the response of the output to
command signals. This is a common error in the literature.

◮ The properties of the different transfer functions can be
illustrated by their transient or frequency responses.

A Possible Choi ce

Six transfer functions are required to show the properties of a
basic feedback loop. Four characterize the response to load
disturbances and measurement noise.

PC

1+ PC
P

1+ PC
C
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Two more are required to describe the response to set point
changes.

PCF

I + PC
CF

1+ PC

Ampl itude Curves of Frequency Respons es

PI control k = 0.775, Ti = 2.05 of P(s) = (s+ 1)−4 with
M(s) = (0.5s+ 1)−4
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Step Respons es

PI control k = 0.775, Ti = 2.05 of P(s) = (s+ 1)−4 with
M(s) = (0.5s+ 1)−4
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An Alternative

Show the responses in the output and the control signal to a
step change in the reference signal for system with pure error
feedback and with feedforward. Keep the reference signal
constant and make a unit step in the process input.

(Upper:) Output response (Lower:) Control signal.
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step responce load disturbance

A Warning!

Please remember to always look at all responses when you are
dealing with control systems. The step response below looks
fine but ...
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Four Respons es
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What is going on?

The System

Process P(s) = 1

s− 1

Controller C(s) = s− 1
s

Response of y to reference r

Y(s)
R(s) =

PC

1+ PC =
1

s+ 1

Response of y to step in disturbance d

Y(s)
D(s) =

P

1+ PC =
s

s2 − 1 =
s

(s+ 1)(s− 1)
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Scaling

Warning: The norms used to measure signal size can be very
misleading if we are using states with very different magnitudes!

Common to scale/normalize variables for state representations

xi = xpi /di

where

◮ x
p
i corresponds to physical units

◮ di corresponds to (expected) max size of variable
(absolute value).

Can also introduce weighted quadratic norms such as

pxp2P = xTPx

where P = PT > 0

Scaling cont ’d

[Skogestad]
Remark:

◮ It is particularly important for the sensitivity function
S = (I + PC)−1of a MIMO system that outputs or output
errors are of the same magnitude for correct comparisons.

◮ If operating around a set-point where the expected or
allowed variation is not symmetric (e.g. if only positive
values allowed) then it may be
better to introduce deviations and scale these instead.

Lecture 3: Specific ations and Disturbanc e Models

Continuing from lecture 2...

◮ Look at all transfer functions the closed-loop system!
(Gang of Four / Gang of six)

◮ Scalings

New today

◮ Stochastic disturbances
◮ From transfer function to output spectrum
◮ From output spectrum to transfer function

Disturbanc es cont .
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Load dis turbances

◮ disturbances which really affect the system
◮ wm measurable — use e.g., in feedforward compensation
◮ ws non-measurable — controller need to suppress these

Measurement dis turbances n

◮ Controller should not be "fooled" by measurement
disturbances

Common case: z = S(u,wm,ws), y= z+ n where

z is the control objective, y is the measured output

Mot ivation

Example: Paper thickness — want to keep down variation in
output!
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Test limit

Paper thickness

All paper production below the test limit is wasted.
Good control allows for lower setpoint with the same waste.
The average thickness is lower, which saves significant costs.

Mot ivation cont ’d - LQG cont rol

System with process noise w and measurement noise v.

Minimize
∫ (

xTQ1x + 2xTQ12u+ uTQ2u
)

dt

subject to ẋ = Ax + Bu+w
y= Cx + Du+ v

where v is white noise with intensity R1 and w is white noise
with intensity R2.

Can solve two separate problems thanks to

Separation principle:
Controller design for full state information
Optimal estimation of states
=[ Output feedback using observer

State-feeadback

s
r

lr
u = lrr − Lx

−L
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y

x

Observer feedback

s
r

lr

−L
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y

Observer

u = lrr − Lx̂

x̂

Linear Quadratic Control (LQ)
Find state-feedback gain L =

[
l1 l2 . . . ln

]
for the control

u = −Lx, being the solution to the optimization problem

Minimize
∫

(
xTQ1x + 2xTQ12u+ uTQ2u

)
dt

subject to ẋ = Ax + Bu
y= Cx + Du

Stochastic Linear Quadratic Control (LQG)
Based on information of the noise v and w find the optimal
observer/Kalman gain K and use control u = −Lx̂

Minimize
∫

(
xTQ1x + 2xTQ12u+ uTQ2u

)
dt

subject to ẋ = Ax + Bu+w
y= Cx + Du+ v

where v is white noise with intensity R1 and w is white noise with
intensity R2.
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A stochastic process (random process, random function) is a
family of stochastic variables {x(t), t ∈ T}
Index set T = {. . . ,−h, 0,h, . . .}, or h = 1
A function of two variables x(t,ω )
Fixed ω = ω 0 gives a time function x(⋅,ω 0) (realization)
Fixed t = t1 gives a random variable x(t1, ⋅)

A realization

t1 t

ξ

    F ξ , t 1( )
1

    x ⋅ , ω1( )

x ⋅ , ω2( )

    x ⋅ , ω 3( )

    x ⋅ , ω4( )

Zero mean stationary stocha stic processes

The distribution is independent of t

Mean-value function
Ex(t) " 0

Covariance function

rxx(τ ) = Ex(t+ τ )x(t)T

Cross-covariance function

rxy(τ ) = Ex(t+ τ )y(t)T

A zero mean Gaussian process x is completely determined by
its covariance function.

Spectral dens ity

Fourier transform of the covariance function

φ xy(ω ) =
∫ ∞

−∞
rxy(t)e−itω

and

rxy(t) =
∫ ∞

−∞
eitωφ xy(ω ) dω

In particular

Ex(t)xT(t) = rxx(0) =
∫ ∞

−∞
φ xx(ω ) dω

White noise e with intensity R:

Φe(ω ) = R for all frequencies ω

Covariance, spectral dens ity, and realization
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Error-correction: The spectra should be divided by 2π

What is this spectrum? What is this spectrum? — Vuvuzela!

Main Problems

1. Determine covariance function and spectral density of y
when white noise u is filtered through the linear system

ẋ = Ax + Bu(k)
y= Cx

2. Conversely, find filter parameters A, B and C to give y a
desired spectral density.

Spectral dens ity and transfer func tions

G(s)u y

What is the output spectral density for y if the input u has
spectral density Φu(ω )?

Y(iω ) = G(iω )U(iω )
where Y = F {y}, U = F {u} are the Fourier transforms.

Φy(ω )=̂Φyy(ω ) = Y(iω )Y(iω )∗ = G(iω )U(iω )U(iω )∗G(iω )∗

Spectral density Φyy(ω ) = G(iω )Φuu(ω )G(iω )∗
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G(s)u y

In similar way we find

cross-spectral density Φyu(ω ) = G(iω )Φuu(ω )

"Everything" can be generated by filtering white noise.

Linear sys tem with whi te noi se input

Consider the linear system

ẋ = Ax + Bv, Φv(ω ) = R

The transfer function from v to x is

G(s) = (sI − A)−1B

and the spectrum for x will be

Φx(ω ) = (iω I − A)−1BR B∗(−iω I − A)−T
︸ ︷︷ ︸

G(iω )∗

ẋ = Ax + Bv, Φv(ω ) = R

Covariance matrix for state x:

Πx = Rx =
1

2π

∫ ∞

−∞
Φx(ω )dω

Alternative way of calculating Πx

Theorem [G&L 5.3]

If all eigenvalues of A are strictly in the left half plane (i.e.
Re{λ k} < 0) then there exists a unique matrix Πx = ΠTx > 0
which is the solution to the matrix equation

AΠx + ΠxA
T + BRBT = 0

Example: Consider the system

ẋ = Ax + Bv =
[
−1 2
−1 0

] [
x1
x2

]

+
[
1

0

]

v

where v is white noise with variance 1.

What is the covariance for x?

First check the eigenvalues of A : λ = −1
2
± i

√
7
2
∈ LHP. OK!

Solve the Lyapunov equation AΠx + ΠxA
T + BRBT = 02,2.

Example cont ’d

AΠx + ΠxA
T + BRBT = 02$2

Find Πx:
[
−1 2
−1 0

] [
Π11 Π12
Π12 Π22

]

+
[

Π11 Π12
Π12 Π22

] [
−1 −1
2 0

]

+
[
1

0

]
[
1 0

]
=

=
[
2(−Π11 + 2Π12) + 1 −Π12 + 2Π22 − Π11
−Π12 + 2Π22 − Π11 −2Π12

]

=
[
0 0

0 0

]

Solving for Π11, Π12 and Π22 gives

=[ Πx =
[

Π11 Π12
Π12 Π22

]

=
[
1/2 0

0 1/4

]

> 0

Matlab: lyap([-1 2; -1 0],[1 ; 0]*[1 0])

Disturbanc e representations – Spectral factor ization

◮ Assume that the disturbance w has spectrum Φw(ω )
◮ (Spectral factorization) Assume that we can find a transfer

function G(s) such that G(iω )RG(iω )∗ = Φw(ω ) for a
constant R.

In that case we can consider w as an output from the linear
system G with white noise as input, Φv(ω ) = R (equal energy
for all frequencies/flat spectrum).
If v and w are scalar valued and Φw(ω ) is a rational function of
ω 2 this is easy to do and furthermore G can always be chosen
to have stable poles.

Remark: If the characteristic polynomial for G(iω ) is
Πnk=1(s− λ k) then G∗ will have its poles as the mirrored in the
the imaginary axis.

State-space model

State-space model with disturbances

ẋ(t) = Ax(t) + Bu(t) + Nw1(t)
z(t) = Mx(t) + Dzu(t)
y(t) = Cx(t) + Dyu(t) +w2(t)

where

◮ w1 is called state- or system noise
◮ w2 is called measurement- or output noise

How to handle colored noise?

If w1 and w2 is colored noise then re-write w1 and w2 as output
signals from linear systems with white noise inputs v1 and v2 .

w1 = G1v1, w2 = G2v2

Make a state space realization of G1 and G2 and extend the
system description with these states

ẋ(t) = Ax(t) + Bu(t) + Nv1(t)
z(t) = Mx(t) + Dzu(t)
y(t) = Cx(t) + Dyu(t) + v2(t)

where the extended state x consists of the state x and the
states from the state-space realizations of G1 and G2.

A is the corresponding system matrix for the extended system
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Lecture 3: Summary

◮ Look at all transfer functions the closed-loop system!
(Gang of Four / Gang of six)

◮ Scalings

New today

◮ Stochastic disturbances
◮ From transfer function to output spectrum
◮ From output spectrum to transfer function


